Lichen

Annotated inspector.py

130:331aa7c15178
2016-10-25 Paul Boddie More elegantly allocated the context parameter for all callables. Rewrote the list comprehension result in get_allocated_locations.
paul@0 1
#!/usr/bin/env python
paul@0 2
paul@0 3
"""
paul@0 4
Inspect and obtain module structure.
paul@0 5
paul@0 6
Copyright (C) 2007, 2008, 2009, 2010, 2011, 2012, 2013,
paul@0 7
              2014, 2015, 2016 Paul Boddie <paul@boddie.org.uk>
paul@0 8
paul@0 9
This program is free software; you can redistribute it and/or modify it under
paul@0 10
the terms of the GNU General Public License as published by the Free Software
paul@0 11
Foundation; either version 3 of the License, or (at your option) any later
paul@0 12
version.
paul@0 13
paul@0 14
This program is distributed in the hope that it will be useful, but WITHOUT
paul@0 15
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
paul@0 16
FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
paul@0 17
details.
paul@0 18
paul@0 19
You should have received a copy of the GNU General Public License along with
paul@0 20
this program.  If not, see <http://www.gnu.org/licenses/>.
paul@0 21
"""
paul@0 22
paul@0 23
from branching import BranchTracker
paul@110 24
from common import CommonModule, get_argnames, init_item, predefined_constants
paul@26 25
from modules import BasicModule, CacheWritingModule, InspectionNaming
paul@3 26
from errors import InspectError
paul@0 27
from referencing import Reference
paul@12 28
from resolving import NameResolving
paul@12 29
from results import AccessRef, InstanceRef, InvocationRef, LiteralSequenceRef, \
paul@12 30
                    LocalNameRef, NameRef, ResolvedNameRef
paul@0 31
import compiler
paul@0 32
import sys
paul@0 33
paul@26 34
class InspectedModule(BasicModule, CacheWritingModule, NameResolving, InspectionNaming):
paul@0 35
paul@0 36
    "A module inspector."
paul@0 37
paul@0 38
    def __init__(self, name, importer):
paul@13 39
paul@13 40
        "Initialise the module with basic details."
paul@13 41
paul@0 42
        BasicModule.__init__(self, name, importer)
paul@12 43
paul@0 44
        self.in_class = False
paul@0 45
        self.in_conditional = False
paul@110 46
paul@110 47
        # Accesses to global attributes.
paul@110 48
paul@0 49
        self.global_attr_accesses = {}
paul@0 50
paul@0 51
        # Usage tracking.
paul@0 52
paul@0 53
        self.trackers = []
paul@0 54
        self.attr_accessor_branches = {}
paul@0 55
paul@0 56
    def __repr__(self):
paul@0 57
        return "InspectedModule(%r, %r)" % (self.name, self.importer)
paul@0 58
paul@27 59
    # Principal methods.
paul@27 60
paul@0 61
    def parse(self, filename):
paul@0 62
paul@0 63
        "Parse the file having the given 'filename'."
paul@0 64
paul@0 65
        self.parse_file(filename)
paul@0 66
paul@0 67
        # Inspect the module.
paul@0 68
paul@0 69
        self.start_tracking_in_module()
paul@0 70
paul@0 71
        # Detect and record imports and globals declared in the module.
paul@0 72
paul@0 73
        self.assign_general_local("__name__", self.get_constant("str", self.name))
paul@0 74
        self.assign_general_local("__file__", self.get_constant("str", filename))
paul@0 75
        self.process_structure(self.astnode)
paul@0 76
paul@0 77
        # Set the class of the module after the definition has occurred.
paul@0 78
paul@0 79
        ref = self.get_builtin("object")
paul@0 80
        self.set_name("__class__", ref)
paul@0 81
paul@0 82
        # Get module-level attribute usage details.
paul@0 83
paul@0 84
        self.stop_tracking_in_module()
paul@0 85
paul@27 86
        # Collect external name references.
paul@0 87
paul@27 88
        self.collect_names()
paul@0 89
paul@12 90
    def complete(self):
paul@0 91
paul@12 92
        "Complete the module inspection."
paul@0 93
paul@12 94
        # Resolve names not definitively mapped to objects.
paul@0 95
paul@12 96
        self.resolve()
paul@0 97
paul@12 98
        # Define the invocation requirements in each namespace.
paul@0 99
paul@12 100
        self.set_invocation_usage()
paul@0 101
paul@12 102
        # Propagate to the importer information needed in subsequent activities.
paul@0 103
paul@12 104
        self.propagate()
paul@0 105
paul@27 106
    # Accessory methods.
paul@0 107
paul@27 108
    def collect_names(self):
paul@0 109
paul@27 110
        "Collect the names used by each scope."
paul@0 111
paul@0 112
        for path in self.names_used.keys():
paul@27 113
            self.collect_names_for_path(path)
paul@27 114
paul@27 115
    def collect_names_for_path(self, path):
paul@0 116
paul@33 117
        """
paul@33 118
        Collect the names used by the given 'path'. These are propagated to the
paul@33 119
        importer in advance of any dependency resolution.
paul@33 120
        """
paul@0 121
paul@0 122
        names = self.names_used.get(path)
paul@0 123
        if not names:
paul@0 124
            return
paul@0 125
paul@0 126
        in_function = self.function_locals.has_key(path)
paul@0 127
paul@0 128
        for name in names:
paul@0 129
            if name in predefined_constants or in_function and name in self.function_locals[path]:
paul@0 130
                continue
paul@0 131
paul@35 132
            # Find local definitions (within dynamic namespaces).
paul@0 133
paul@0 134
            key = "%s.%s" % (path, name)
paul@27 135
            ref = self.get_resolved_object(key)
paul@0 136
            if ref:
paul@40 137
                self.set_name_reference(key, ref)
paul@0 138
                continue
paul@0 139
paul@40 140
            # Find global or known built-in definitions.
paul@0 141
paul@27 142
            ref = self.get_resolved_global_or_builtin(name)
paul@27 143
            if ref:
paul@40 144
                self.set_name_reference(key, ref)
paul@0 145
                continue
paul@0 146
paul@40 147
            # Find presumed built-in definitions.
paul@0 148
paul@40 149
            ref = self.get_builtin(name)
paul@40 150
            self.set_name_reference(key, ref)
paul@0 151
paul@40 152
    def set_name_reference(self, path, ref):
paul@0 153
paul@40 154
        "Map the given name 'path' to 'ref'."
paul@0 155
paul@40 156
        self.importer.all_name_references[path] = self.name_references[path] = ref
paul@0 157
paul@27 158
    def get_resolved_global_or_builtin(self, name):
paul@0 159
paul@27 160
        "Return the resolved global or built-in object with the given 'name'."
paul@0 161
paul@40 162
        # In some circumstances, the name is neither global nor recognised by
paul@40 163
        # the importer. It is then assumed to be a general built-in.
paul@0 164
paul@40 165
        return self.get_global(name) or \
paul@40 166
               self.importer.get_object("__builtins__.%s" % name)
paul@0 167
paul@0 168
    # Module structure traversal.
paul@0 169
paul@0 170
    def process_structure_node(self, n):
paul@0 171
paul@0 172
        "Process the individual node 'n'."
paul@0 173
paul@0 174
        # Module global detection.
paul@0 175
paul@0 176
        if isinstance(n, compiler.ast.Global):
paul@0 177
            self.process_global_node(n)
paul@0 178
paul@0 179
        # Module import declarations.
paul@0 180
paul@0 181
        elif isinstance(n, compiler.ast.From):
paul@0 182
            self.process_from_node(n)
paul@0 183
paul@0 184
        elif isinstance(n, compiler.ast.Import):
paul@0 185
            self.process_import_node(n)
paul@0 186
paul@0 187
        # Nodes using operator module functions.
paul@0 188
paul@0 189
        elif isinstance(n, compiler.ast.Operator):
paul@0 190
            return self.process_operator_node(n)
paul@0 191
paul@0 192
        elif isinstance(n, compiler.ast.AugAssign):
paul@0 193
            self.process_augassign_node(n)
paul@0 194
paul@0 195
        elif isinstance(n, compiler.ast.Compare):
paul@0 196
            return self.process_compare_node(n)
paul@0 197
paul@0 198
        elif isinstance(n, compiler.ast.Slice):
paul@0 199
            return self.process_slice_node(n)
paul@0 200
paul@0 201
        elif isinstance(n, compiler.ast.Sliceobj):
paul@0 202
            return self.process_sliceobj_node(n)
paul@0 203
paul@0 204
        elif isinstance(n, compiler.ast.Subscript):
paul@0 205
            return self.process_subscript_node(n)
paul@0 206
paul@0 207
        # Namespaces within modules.
paul@0 208
paul@0 209
        elif isinstance(n, compiler.ast.Class):
paul@0 210
            self.process_class_node(n)
paul@0 211
paul@0 212
        elif isinstance(n, compiler.ast.Function):
paul@0 213
            self.process_function_node(n, n.name)
paul@0 214
paul@0 215
        elif isinstance(n, compiler.ast.Lambda):
paul@0 216
            return self.process_lambda_node(n)
paul@0 217
paul@0 218
        # Assignments.
paul@0 219
paul@0 220
        elif isinstance(n, compiler.ast.Assign):
paul@0 221
paul@0 222
            # Handle each assignment node.
paul@0 223
paul@0 224
            for node in n.nodes:
paul@0 225
                self.process_assignment_node(node, n.expr)
paul@0 226
paul@0 227
        # Assignments within non-Assign nodes.
paul@0 228
paul@0 229
        elif isinstance(n, compiler.ast.AssName):
paul@0 230
            self.process_assignment_node(n, None)
paul@0 231
paul@0 232
        elif isinstance(n, compiler.ast.AssAttr):
paul@0 233
            self.process_attribute_access(n)
paul@0 234
paul@0 235
        # Accesses.
paul@0 236
paul@0 237
        elif isinstance(n, compiler.ast.Getattr):
paul@0 238
            return self.process_attribute_access(n)
paul@0 239
paul@0 240
        # Name recording for later testing.
paul@0 241
paul@0 242
        elif isinstance(n, compiler.ast.Name):
paul@0 243
            return self.process_name_node(n)
paul@0 244
paul@0 245
        # Conditional statement tracking.
paul@0 246
paul@0 247
        elif isinstance(n, compiler.ast.For):
paul@0 248
            self.process_for_node(n)
paul@0 249
paul@0 250
        elif isinstance(n, compiler.ast.While):
paul@0 251
            self.process_while_node(n)
paul@0 252
paul@0 253
        elif isinstance(n, compiler.ast.If):
paul@0 254
            self.process_if_node(n)
paul@0 255
paul@0 256
        elif isinstance(n, (compiler.ast.And, compiler.ast.Or)):
paul@0 257
            return self.process_logical_node(n)
paul@0 258
paul@0 259
        # Exception control-flow tracking.
paul@0 260
paul@0 261
        elif isinstance(n, compiler.ast.TryExcept):
paul@0 262
            self.process_try_node(n)
paul@0 263
paul@0 264
        elif isinstance(n, compiler.ast.TryFinally):
paul@0 265
            self.process_try_finally_node(n)
paul@0 266
paul@0 267
        # Control-flow modification statements.
paul@0 268
paul@0 269
        elif isinstance(n, compiler.ast.Break):
paul@0 270
            self.trackers[-1].suspend_broken_branch()
paul@0 271
paul@0 272
        elif isinstance(n, compiler.ast.Continue):
paul@0 273
            self.trackers[-1].suspend_continuing_branch()
paul@0 274
paul@0 275
        elif isinstance(n, compiler.ast.Raise):
paul@0 276
            self.process_structure(n)
paul@0 277
            self.trackers[-1].abandon_branch()
paul@0 278
paul@0 279
        elif isinstance(n, compiler.ast.Return):
paul@0 280
            self.process_structure(n)
paul@0 281
            self.trackers[-1].abandon_returning_branch()
paul@0 282
paul@0 283
        # Invocations.
paul@0 284
paul@0 285
        elif isinstance(n, compiler.ast.CallFunc):
paul@0 286
            return self.process_invocation_node(n)
paul@0 287
paul@0 288
        # Constant usage.
paul@0 289
paul@0 290
        elif isinstance(n, compiler.ast.Const):
paul@0 291
            return self.get_literal_instance(n, n.value.__class__.__name__)
paul@0 292
paul@0 293
        elif isinstance(n, compiler.ast.Dict):
paul@0 294
            return self.get_literal_instance(n, "dict")
paul@0 295
paul@0 296
        elif isinstance(n, compiler.ast.List):
paul@0 297
            return self.get_literal_instance(n, "list")
paul@0 298
paul@0 299
        elif isinstance(n, compiler.ast.Tuple):
paul@0 300
            return self.get_literal_instance(n, "tuple")
paul@0 301
paul@3 302
        # Unsupported nodes.
paul@3 303
paul@3 304
        elif isinstance(n, compiler.ast.GenExpr):
paul@3 305
            raise InspectError("Generator expressions are not supported.", self.get_namespace_path(), n)
paul@3 306
paul@3 307
        elif isinstance(n, compiler.ast.IfExp):
paul@3 308
            raise InspectError("If-else expressions are not supported.", self.get_namespace_path(), n)
paul@0 309
paul@0 310
        elif isinstance(n, compiler.ast.ListComp):
paul@3 311
            raise InspectError("List comprehensions are not supported.", self.get_namespace_path(), n)
paul@0 312
paul@0 313
        # All other nodes are processed depth-first.
paul@0 314
paul@0 315
        else:
paul@0 316
            self.process_structure(n)
paul@0 317
paul@0 318
        # By default, no expression details are returned.
paul@0 319
paul@0 320
        return None
paul@0 321
paul@0 322
    # Specific node handling.
paul@0 323
paul@0 324
    def process_assignment_node(self, n, expr):
paul@0 325
paul@0 326
        "Process the individual node 'n' to be assigned the contents of 'expr'."
paul@0 327
paul@0 328
        # Names and attributes are assigned the entire expression.
paul@0 329
paul@0 330
        if isinstance(n, compiler.ast.AssName):
paul@61 331
            if n.name == "self":
paul@61 332
                raise InspectError("Redefinition of self is not allowed.", self.get_namespace_path(), n)
paul@0 333
paul@0 334
            name_ref = expr and self.process_structure_node(expr)
paul@0 335
paul@0 336
            # Name assignments populate either function namespaces or the
paul@0 337
            # general namespace hierarchy.
paul@0 338
paul@0 339
            self.assign_general_local(n.name, name_ref)
paul@0 340
paul@0 341
            # Record usage of the name.
paul@0 342
paul@0 343
            self.record_name(n.name)
paul@0 344
paul@0 345
        elif isinstance(n, compiler.ast.AssAttr):
paul@124 346
            if expr:
paul@124 347
                expr = self.process_structure_node(expr)
paul@107 348
paul@107 349
            in_assignment = self.in_assignment
paul@124 350
            self.in_assignment = expr
paul@0 351
            self.process_attribute_access(n)
paul@107 352
            self.in_assignment = in_assignment
paul@0 353
paul@0 354
        # Lists and tuples are matched against the expression and their
paul@0 355
        # items assigned to expression items.
paul@0 356
paul@0 357
        elif isinstance(n, (compiler.ast.AssList, compiler.ast.AssTuple)):
paul@0 358
            self.process_assignment_node_items(n, expr)
paul@0 359
paul@0 360
        # Slices and subscripts are permitted within assignment nodes.
paul@0 361
paul@0 362
        elif isinstance(n, compiler.ast.Slice):
paul@0 363
            self.process_slice_node(n, expr)
paul@0 364
paul@0 365
        elif isinstance(n, compiler.ast.Subscript):
paul@0 366
            self.process_subscript_node(n, expr)
paul@0 367
paul@0 368
    def process_attribute_access(self, n):
paul@0 369
paul@0 370
        "Process the given attribute access node 'n'."
paul@0 371
paul@107 372
        # Obtain any completed chain and return the reference to it.
paul@107 373
paul@0 374
        name_ref = self.process_attribute_chain(n)
paul@107 375
paul@0 376
        if self.have_access_expression(n):
paul@0 377
            return name_ref
paul@0 378
paul@0 379
        # Where the start of the chain of attributes has been reached, determine
paul@0 380
        # the complete access.
paul@0 381
paul@0 382
        # Given a non-access node, this chain can be handled in its entirety,
paul@0 383
        # either being name-based and thus an access rooted on a name, or being
paul@0 384
        # based on some other node and thus an anonymous access of some kind.
paul@0 385
paul@0 386
        path = self.get_namespace_path()
paul@0 387
paul@0 388
        # Start with the the full attribute chain.
paul@0 389
paul@0 390
        remaining = self.attrs
paul@0 391
        attrnames = ".".join(remaining)
paul@0 392
paul@0 393
        # If the accessor cannot be identified, or where attributes
paul@0 394
        # remain in an attribute chain, record the anonymous accesses.
paul@0 395
paul@0 396
        if not isinstance(name_ref, NameRef): # includes ResolvedNameRef
paul@0 397
paul@0 398
            init_item(self.attr_accesses, path, set)
paul@0 399
            self.attr_accesses[path].add(attrnames)
paul@0 400
paul@117 401
            self.record_access_details(None, attrnames, self.in_assignment,
paul@117 402
                self.in_invocation)
paul@0 403
            del self.attrs[0]
paul@0 404
            return
paul@0 405
paul@0 406
        # Name-based accesses will handle the first attribute in a
paul@0 407
        # chain.
paul@0 408
paul@0 409
        else:
paul@0 410
            attrname = remaining[0]
paul@0 411
paul@0 412
            # Attribute assignments are used to identify instance attributes.
paul@0 413
paul@0 414
            if isinstance(n, compiler.ast.AssAttr) and \
paul@0 415
                self.in_class and self.in_function and n.expr.name == "self":
paul@0 416
paul@0 417
                self.set_instance_attr(attrname)
paul@0 418
paul@0 419
            # Record attribute usage using any name local to this namespace,
paul@0 420
            # if assigned in the namespace, or using an external name
paul@0 421
            # (presently just globals within classes).
paul@0 422
paul@0 423
            name = self.get_name_for_tracking(name_ref.name, name_ref.final())
paul@0 424
            tracker = self.trackers[-1]
paul@0 425
paul@0 426
            immediate_access = len(self.attrs) == 1
paul@0 427
            assignment = immediate_access and isinstance(n, compiler.ast.AssAttr)
paul@0 428
paul@0 429
            # Record global-based chains for subsequent resolution.
paul@0 430
paul@0 431
            is_global = self.in_function and not self.function_locals[path].has_key(name) or \
paul@0 432
                        not self.in_function
paul@0 433
paul@0 434
            if is_global:
paul@0 435
                self.record_global_access_details(name, attrnames)
paul@0 436
paul@0 437
            # Make sure the name is being tracked: global names will not
paul@0 438
            # already be initialised in a branch and must be added
paul@0 439
            # explicitly.
paul@0 440
paul@0 441
            if not tracker.have_name(name):
paul@0 442
                tracker.assign_names([name])
paul@0 443
                if self.in_function:
paul@0 444
                    self.scope_globals[path].add(name)
paul@0 445
paul@0 446
            # Record attribute usage in the tracker, and record the branch
paul@0 447
            # information for the access.
paul@0 448
paul@110 449
            branches = tracker.use_attribute(name, attrname, self.in_invocation, assignment)
paul@0 450
paul@0 451
            if not branches:
paul@84 452
                raise InspectError("Name %s is accessed using %s before an assignment." % (
paul@84 453
                    name, attrname), path, n)
paul@0 454
paul@0 455
            self.record_branches_for_access(branches, name, attrnames)
paul@117 456
            access_number = self.record_access_details(name, attrnames,
paul@117 457
                self.in_assignment, self.in_invocation)
paul@107 458
paul@107 459
            del self.attrs[0]
paul@0 460
            return AccessRef(name, attrnames, access_number)
paul@0 461
paul@0 462
    def process_class_node(self, n):
paul@0 463
paul@0 464
        "Process the given class node 'n'."
paul@0 465
paul@0 466
        path = self.get_namespace_path()
paul@0 467
paul@0 468
        # To avoid notions of class "versions" where the same definition
paul@0 469
        # might be parameterised with different state and be referenced
paul@0 470
        # elsewhere (as base classes, for example), classes in functions or
paul@0 471
        # conditions are forbidden.
paul@0 472
paul@0 473
        if self.in_function or self.in_conditional:
paul@0 474
            print >>sys.stderr, "In %s, class %s in function or conditional statement ignored." % (
paul@0 475
                path, n.name)
paul@0 476
            return
paul@0 477
paul@0 478
        # Resolve base classes.
paul@0 479
paul@0 480
        bases = []
paul@0 481
paul@0 482
        for base in n.bases:
paul@0 483
            base_class = self.get_class(base)
paul@0 484
paul@0 485
            if not base_class:
paul@12 486
                print >>sys.stderr, "In %s, class %s has unidentifiable base class: %s" % (
paul@12 487
                    path, n.name, base)
paul@0 488
                return
paul@0 489
            else:
paul@0 490
                bases.append(base_class)
paul@0 491
paul@0 492
        # Record bases for the class and retain the class name.
paul@107 493
        # Note that the function class does not inherit from the object class.
paul@0 494
paul@0 495
        class_name = self.get_object_path(n.name)
paul@0 496
paul@107 497
        if not bases and class_name != "__builtins__.core.object" and \
paul@107 498
                         class_name != "__builtins__.core.function":
paul@107 499
paul@0 500
            ref = self.get_object("__builtins__.object")
paul@0 501
            bases.append(ref)
paul@0 502
paul@0 503
        self.importer.classes[class_name] = self.classes[class_name] = bases
paul@0 504
        self.importer.subclasses[class_name] = set()
paul@0 505
        self.scope_globals[class_name] = set()
paul@0 506
paul@0 507
        # Set the definition before entering the namespace rather than
paul@0 508
        # afterwards because methods may reference it. In normal Python,
paul@0 509
        # a class is not accessible until the definition is complete, but
paul@0 510
        # methods can generally reference it since upon being called the
paul@0 511
        # class will already exist.
paul@0 512
paul@0 513
        self.set_definition(n.name, "<class>")
paul@0 514
paul@0 515
        in_class = self.in_class
paul@0 516
        self.in_class = class_name
paul@0 517
        self.set_instance_attr("__class__", Reference("<class>", class_name))
paul@0 518
        self.enter_namespace(n.name)
paul@107 519
paul@107 520
        # Do not provide the special instantiator attributes on the function
paul@107 521
        # class. Function instances provide these attributes.
paul@107 522
paul@107 523
        if class_name != "__builtins__.core.function":
paul@107 524
            self.set_name("__fn__") # special instantiator attribute
paul@107 525
            self.set_name("__args__") # special instantiator attribute
paul@107 526
paul@0 527
        self.assign_general_local("__name__", self.get_constant("str", class_name))
paul@0 528
        self.process_structure_node(n.code)
paul@0 529
        self.exit_namespace()
paul@0 530
        self.in_class = in_class
paul@0 531
paul@0 532
    def process_from_node(self, n):
paul@0 533
paul@0 534
        "Process the given node 'n', importing from another module."
paul@0 535
paul@0 536
        path = self.get_namespace_path()
paul@0 537
paul@12 538
        module_name, names = self.get_module_name(n)
paul@12 539
        if module_name == self.name:
paul@12 540
            raise InspectError("Cannot import from the current module.", path, n)
paul@0 541
paul@18 542
        self.queue_module(module_name)
paul@0 543
paul@0 544
        # Attempt to obtain the referenced objects.
paul@0 545
paul@0 546
        for name, alias in n.names:
paul@0 547
            if name == "*":
paul@12 548
                raise InspectError("Only explicitly specified names can be imported from modules.", path, n)
paul@0 549
paul@0 550
            # Explicit names.
paul@0 551
paul@12 552
            ref = self.import_name_from_module(name, module_name)
paul@0 553
            value = ResolvedNameRef(alias or name, ref)
paul@0 554
            self.set_general_local(alias or name, value)
paul@0 555
paul@0 556
    def process_function_node(self, n, name):
paul@0 557
paul@0 558
        """
paul@0 559
        Process the given function or lambda node 'n' with the given 'name'.
paul@0 560
        """
paul@0 561
paul@0 562
        is_lambda = isinstance(n, compiler.ast.Lambda)
paul@0 563
paul@0 564
        # Where a function is declared conditionally, use a separate name for
paul@0 565
        # the definition, and assign the definition to the stated name.
paul@0 566
paul@0 567
        if (self.in_conditional or self.in_function) and not is_lambda:
paul@0 568
            original_name = name
paul@0 569
            name = self.get_lambda_name()
paul@0 570
        else:
paul@0 571
            original_name = None
paul@0 572
paul@0 573
        # Initialise argument and local records.
paul@0 574
paul@0 575
        function_name = self.get_object_path(name)
paul@46 576
        argnames = get_argnames(n.argnames)
paul@48 577
        is_method = self.in_class and not self.in_function
paul@0 578
paul@48 579
        # Remove explicit "self" from method parameters.
paul@46 580
paul@48 581
        if is_method and argnames and argnames[0] == "self":
paul@48 582
            del argnames[0]
paul@48 583
paul@48 584
        # Copy and propagate the parameters.
paul@46 585
paul@46 586
        self.importer.function_parameters[function_name] = \
paul@109 587
            self.function_parameters[function_name] = argnames[:]
paul@46 588
paul@46 589
        # Define all arguments/parameters in the local namespace.
paul@46 590
paul@109 591
        locals = \
paul@109 592
            self.importer.function_locals[function_name] = \
paul@109 593
            self.function_locals[function_name] = {}
paul@0 594
paul@48 595
        # Insert "self" into method locals.
paul@48 596
paul@48 597
        if is_method:
paul@48 598
            argnames.insert(0, "self")
paul@48 599
paul@47 600
        # Define "self" in terms of the class if in a method.
paul@47 601
        # This does not diminish the need for type-narrowing in the deducer.
paul@47 602
paul@47 603
        if argnames:
paul@48 604
            if self.in_class and not self.in_function and argnames[0] == "self":
paul@47 605
                locals[argnames[0]] = Reference("<instance>", self.in_class)
paul@47 606
            else:
paul@47 607
                locals[argnames[0]] = Reference("<var>")
paul@47 608
paul@47 609
        for argname in argnames[1:]:
paul@0 610
            locals[argname] = Reference("<var>")
paul@0 611
paul@0 612
        globals = self.scope_globals[function_name] = set()
paul@0 613
paul@0 614
        # Process the defaults.
paul@0 615
paul@0 616
        defaults = self.importer.function_defaults[function_name] = \
paul@0 617
                   self.function_defaults[function_name] = []
paul@0 618
paul@0 619
        for argname, default in compiler.ast.get_defaults(n):
paul@0 620
            if default:
paul@0 621
paul@0 622
                # Obtain any reference for the default.
paul@0 623
paul@0 624
                name_ref = self.process_structure_node(default)
paul@0 625
                defaults.append((argname, name_ref.is_name() and name_ref.reference() or Reference("<var>")))
paul@0 626
paul@0 627
        # Reset conditional tracking to focus on the function contents.
paul@0 628
paul@0 629
        in_conditional = self.in_conditional
paul@0 630
        self.in_conditional = False
paul@0 631
paul@0 632
        in_function = self.in_function
paul@0 633
        self.in_function = function_name
paul@0 634
paul@0 635
        self.enter_namespace(name)
paul@0 636
paul@0 637
        # Track attribute usage within the namespace.
paul@0 638
paul@0 639
        path = self.get_namespace_path()
paul@0 640
paul@0 641
        self.start_tracking(locals)
paul@0 642
        self.process_structure_node(n.code)
paul@0 643
        self.stop_tracking()
paul@0 644
paul@1 645
        # Exit to the parent.
paul@0 646
paul@0 647
        self.exit_namespace()
paul@0 648
paul@0 649
        # Update flags.
paul@0 650
paul@0 651
        self.in_function = in_function
paul@0 652
        self.in_conditional = in_conditional
paul@0 653
paul@0 654
        # Define the function using the appropriate name.
paul@0 655
paul@0 656
        self.set_definition(name, "<function>")
paul@0 657
paul@0 658
        # Where a function is set conditionally, assign the name.
paul@0 659
paul@0 660
        if original_name:
paul@0 661
            self.process_assignment_for_function(original_name, name)
paul@0 662
paul@0 663
    def process_global_node(self, n):
paul@0 664
paul@0 665
        """
paul@0 666
        Process the given "global" node 'n'.
paul@0 667
        """
paul@0 668
paul@0 669
        path = self.get_namespace_path()
paul@0 670
paul@0 671
        if path != self.name:
paul@0 672
            self.scope_globals[path].update(n.names)
paul@0 673
paul@0 674
    def process_if_node(self, n):
paul@0 675
paul@0 676
        """
paul@0 677
        Process the given "if" node 'n'.
paul@0 678
        """
paul@0 679
paul@0 680
        tracker = self.trackers[-1]
paul@0 681
        tracker.new_branchpoint()
paul@0 682
paul@0 683
        for test, body in n.tests:
paul@0 684
            self.process_structure_node(test)
paul@0 685
paul@0 686
            tracker.new_branch()
paul@0 687
paul@0 688
            in_conditional = self.in_conditional
paul@0 689
            self.in_conditional = True
paul@0 690
            self.process_structure_node(body)
paul@0 691
            self.in_conditional = in_conditional
paul@0 692
paul@0 693
            tracker.shelve_branch()
paul@0 694
paul@0 695
        # Maintain a branch for the else clause.
paul@0 696
paul@0 697
        tracker.new_branch()
paul@0 698
        if n.else_:
paul@0 699
            self.process_structure_node(n.else_)
paul@0 700
        tracker.shelve_branch()
paul@0 701
paul@0 702
        tracker.merge_branches()
paul@0 703
paul@0 704
    def process_import_node(self, n):
paul@0 705
paul@0 706
        "Process the given import node 'n'."
paul@0 707
paul@0 708
        path = self.get_namespace_path()
paul@0 709
paul@0 710
        # Load the mentioned module.
paul@0 711
paul@0 712
        for name, alias in n.names:
paul@12 713
            if name == self.name:
paul@12 714
                raise InspectError("Cannot import the current module.", path, n)
paul@0 715
paul@13 716
            self.set_module(alias or name.split(".")[-1], name)
paul@18 717
            self.queue_module(name, True)
paul@0 718
paul@0 719
    def process_invocation_node(self, n):
paul@0 720
paul@0 721
        "Process the given invocation node 'n'."
paul@0 722
paul@0 723
        path = self.get_namespace_path()
paul@0 724
paul@0 725
        self.allocate_arguments(path, n.args)
paul@0 726
paul@0 727
        try:
paul@107 728
            # Communicate to the invocation target expression that it forms the
paul@107 729
            # target of an invocation, potentially affecting attribute accesses.
paul@0 730
paul@88 731
            in_invocation = self.in_invocation
paul@88 732
            self.in_invocation = True
paul@107 733
paul@107 734
            # Process the expression, obtaining any identified reference.
paul@107 735
paul@0 736
            name_ref = self.process_structure_node(n.node)
paul@88 737
            self.in_invocation = in_invocation
paul@0 738
paul@0 739
            # Process the arguments.
paul@0 740
paul@0 741
            for arg in n.args:
paul@0 742
                self.process_structure_node(arg)
paul@0 743
paul@0 744
            # Detect class invocations.
paul@0 745
paul@0 746
            if isinstance(name_ref, ResolvedNameRef) and name_ref.has_kind("<class>"):
paul@0 747
                return InstanceRef(name_ref.reference().instance_of())
paul@0 748
paul@0 749
            elif isinstance(name_ref, NameRef):
paul@0 750
                return InvocationRef(name_ref)
paul@0 751
paul@0 752
            return None
paul@0 753
paul@0 754
        finally:
paul@0 755
            self.deallocate_arguments(path, n.args)
paul@0 756
paul@0 757
    def process_lambda_node(self, n):
paul@0 758
paul@0 759
        "Process the given lambda node 'n'."
paul@0 760
paul@0 761
        name = self.get_lambda_name()
paul@0 762
        self.process_function_node(n, name)
paul@0 763
paul@0 764
        origin = self.get_object_path(name)
paul@0 765
        return ResolvedNameRef(name, Reference("<function>", origin))
paul@0 766
paul@0 767
    def process_logical_node(self, n):
paul@0 768
paul@0 769
        "Process the given operator node 'n'."
paul@0 770
paul@0 771
        self.process_operator_chain(n.nodes, self.process_structure_node)
paul@0 772
paul@0 773
    def process_name_node(self, n):
paul@0 774
paul@0 775
        "Process the given name node 'n'."
paul@0 776
paul@0 777
        path = self.get_namespace_path()
paul@0 778
paul@0 779
        # Special names.
paul@0 780
paul@0 781
        if n.name.startswith("$"):
paul@0 782
            value = self.get_special(n.name)
paul@0 783
            if value:
paul@0 784
                return value
paul@0 785
paul@0 786
        # Special case for operator functions introduced through code
paul@0 787
        # transformations.
paul@0 788
paul@0 789
        if n.name.startswith("$op"):
paul@0 790
paul@0 791
            # Obtain the location of the actual function defined in the operator
paul@0 792
            # package.
paul@0 793
paul@0 794
            op = n.name[len("$op"):]
paul@0 795
paul@0 796
            # Attempt to get a reference.
paul@0 797
paul@12 798
            ref = self.import_name_from_module(op, "operator")
paul@35 799
            self.add_deferred(ref)
paul@0 800
paul@0 801
            # Record the imported name and provide the resolved name reference.
paul@0 802
paul@0 803
            value = ResolvedNameRef(n.name, ref)
paul@0 804
            self.set_special(n.name, value)
paul@0 805
            return value
paul@0 806
paul@60 807
        # Test for self usage, which is only allowed in methods.
paul@60 808
paul@60 809
        if n.name == "self" and not (self.in_function and self.in_class):
paul@60 810
            raise InspectError("Use of self is only allowed in methods.", path, n)
paul@60 811
paul@0 812
        # Record usage of the name.
paul@0 813
paul@0 814
        self.record_name(n.name)
paul@0 815
paul@0 816
        # Search for unknown names in non-function scopes immediately.
paul@0 817
        # External names in functions are resolved later.
paul@0 818
paul@0 819
        ref = self.find_name(n.name)
paul@0 820
        if ref:
paul@0 821
            return ResolvedNameRef(n.name, ref)
paul@0 822
paul@40 823
        # Explicitly-declared global names.
paul@0 824
paul@0 825
        elif self.in_function and n.name in self.scope_globals[path]:
paul@0 826
            return NameRef(n.name)
paul@0 827
paul@0 828
        # Examine other names.
paul@0 829
paul@0 830
        else:
paul@0 831
            tracker = self.trackers[-1]
paul@0 832
paul@0 833
            # Check local names.
paul@0 834
paul@0 835
            branches = tracker.tracking_name(n.name)
paul@0 836
paul@1 837
            # Local name.
paul@0 838
paul@0 839
            if branches:
paul@0 840
                self.record_branches_for_access(branches, n.name, None)
paul@117 841
                access_number = self.record_access_details(n.name, None, False, False)
paul@0 842
                return LocalNameRef(n.name, access_number)
paul@0 843
paul@40 844
            # Possible global or built-in name.
paul@0 845
paul@0 846
            else:
paul@0 847
                return NameRef(n.name)
paul@0 848
paul@0 849
    def process_operator_chain(self, nodes, fn):
paul@0 850
paul@0 851
        """
paul@0 852
        Process the given chain of 'nodes', applying 'fn' to each node or item.
paul@0 853
        Each node starts a new conditional region, effectively making a deeply-
paul@0 854
        nested collection of if-like statements.
paul@0 855
        """
paul@0 856
paul@0 857
        tracker = self.trackers[-1]
paul@0 858
paul@0 859
        for item in nodes:
paul@0 860
            tracker.new_branchpoint()
paul@0 861
            tracker.new_branch()
paul@0 862
            fn(item)
paul@0 863
paul@0 864
        for item in nodes[:-1]:
paul@0 865
            tracker.shelve_branch()
paul@0 866
            tracker.new_branch()
paul@0 867
            tracker.shelve_branch()
paul@0 868
            tracker.merge_branches()
paul@0 869
paul@0 870
        tracker.shelve_branch()
paul@0 871
        tracker.merge_branches()
paul@0 872
paul@0 873
    def process_try_node(self, n):
paul@0 874
paul@0 875
        """
paul@0 876
        Process the given "try...except" node 'n'.
paul@0 877
        """
paul@0 878
paul@0 879
        tracker = self.trackers[-1]
paul@0 880
        tracker.new_branchpoint()
paul@0 881
paul@0 882
        self.process_structure_node(n.body)
paul@0 883
paul@0 884
        for name, var, handler in n.handlers:
paul@0 885
            if name is not None:
paul@0 886
                self.process_structure_node(name)
paul@0 887
paul@0 888
            # Any abandoned branches from the body can now be resumed in a new
paul@0 889
            # branch.
paul@0 890
paul@0 891
            tracker.resume_abandoned_branches()
paul@0 892
paul@0 893
            # Establish the local for the handler.
paul@0 894
paul@0 895
            if var is not None:
paul@0 896
                self.process_structure_node(var)
paul@0 897
            if handler is not None:
paul@0 898
                self.process_structure_node(handler)
paul@0 899
paul@0 900
            tracker.shelve_branch()
paul@0 901
paul@0 902
        # The else clause maintains the usage from the body but without the
paul@0 903
        # abandoned branches since they would never lead to the else clause
paul@0 904
        # being executed.
paul@0 905
paul@0 906
        if n.else_:
paul@0 907
            tracker.new_branch()
paul@0 908
            self.process_structure_node(n.else_)
paul@0 909
            tracker.shelve_branch()
paul@0 910
paul@0 911
        # Without an else clause, a null branch propagates the successful
paul@0 912
        # outcome.
paul@0 913
paul@0 914
        else:
paul@0 915
            tracker.new_branch()
paul@0 916
            tracker.shelve_branch()
paul@0 917
paul@0 918
        tracker.merge_branches()
paul@0 919
paul@0 920
    def process_try_finally_node(self, n):
paul@0 921
paul@0 922
        """
paul@0 923
        Process the given "try...finally" node 'n'.
paul@0 924
        """
paul@0 925
paul@0 926
        tracker = self.trackers[-1]
paul@0 927
        self.process_structure_node(n.body)
paul@0 928
paul@0 929
        # Any abandoned branches from the body can now be resumed.
paul@0 930
paul@0 931
        branches = tracker.resume_all_abandoned_branches()
paul@0 932
        self.process_structure_node(n.final)
paul@0 933
paul@0 934
        # At the end of the finally clause, abandoned branches are discarded.
paul@0 935
paul@0 936
        tracker.restore_active_branches(branches)
paul@0 937
paul@0 938
    def process_while_node(self, n):
paul@0 939
paul@0 940
        "Process the given while node 'n'."
paul@0 941
paul@0 942
        tracker = self.trackers[-1]
paul@0 943
        tracker.new_branchpoint(loop_node=True)
paul@0 944
paul@0 945
        # Evaluate any test or iterator outside the loop.
paul@0 946
paul@0 947
        self.process_structure_node(n.test)
paul@0 948
paul@0 949
        # Propagate attribute usage to branches.
paul@0 950
paul@0 951
        tracker.new_branch(loop_node=True)
paul@0 952
paul@0 953
        # Enter the loop.
paul@0 954
paul@0 955
        in_conditional = self.in_conditional
paul@0 956
        self.in_conditional = True
paul@0 957
        self.process_structure_node(n.body)
paul@0 958
        self.in_conditional = in_conditional
paul@0 959
paul@0 960
        # Continuing branches are resumed before any test.
paul@0 961
paul@0 962
        tracker.resume_continuing_branches()
paul@0 963
paul@0 964
        # Evaluate any continuation test within the body.
paul@0 965
paul@0 966
        self.process_structure_node(n.test)
paul@0 967
paul@0 968
        tracker.shelve_branch(loop_node=True)
paul@0 969
paul@0 970
        # Support the non-looping condition.
paul@0 971
paul@0 972
        tracker.new_branch()
paul@0 973
        tracker.shelve_branch()
paul@0 974
paul@0 975
        tracker.merge_branches()
paul@0 976
paul@0 977
        # Evaluate any else clause outside branches.
paul@0 978
paul@0 979
        if n.else_:
paul@0 980
            self.process_structure_node(n.else_)
paul@0 981
paul@0 982
        # Connect broken branches to the code after any loop.
paul@0 983
paul@0 984
        tracker.resume_broken_branches()
paul@0 985
paul@0 986
    # Branch tracking methods.
paul@0 987
paul@0 988
    def start_tracking(self, names):
paul@0 989
paul@0 990
        """
paul@0 991
        Start tracking attribute usage for names in the current namespace,
paul@0 992
        immediately registering the given 'names'.
paul@0 993
        """
paul@0 994
paul@0 995
        path = self.get_namespace_path()
paul@0 996
        parent = self.trackers[-1]
paul@0 997
        tracker = BranchTracker()
paul@0 998
        self.trackers.append(tracker)
paul@0 999
paul@0 1000
        # Record the given names established as new branches.
paul@0 1001
paul@0 1002
        tracker.assign_names(names)
paul@0 1003
paul@0 1004
    def assign_name(self, name, name_ref):
paul@0 1005
paul@0 1006
        "Assign to 'name' the given 'name_ref' in the current namespace."
paul@0 1007
paul@0 1008
        name = self.get_name_for_tracking(name)
paul@0 1009
        self.trackers[-1].assign_names([name], [name_ref])
paul@0 1010
paul@0 1011
    def stop_tracking(self):
paul@0 1012
paul@0 1013
        """
paul@0 1014
        Stop tracking attribute usage, recording computed usage for the current
paul@0 1015
        namespace.
paul@0 1016
        """
paul@0 1017
paul@0 1018
        path = self.get_namespace_path()
paul@0 1019
        tracker = self.trackers.pop()
paul@0 1020
        self.record_assignments_for_access(tracker)
paul@0 1021
paul@0 1022
        self.attr_usage[path] = tracker.get_all_usage()
paul@0 1023
        self.name_initialisers[path] = tracker.get_all_values()
paul@0 1024
paul@0 1025
    def start_tracking_in_module(self):
paul@0 1026
paul@0 1027
        "Start tracking attribute usage in the module."
paul@0 1028
paul@0 1029
        tracker = BranchTracker()
paul@0 1030
        self.trackers.append(tracker)
paul@0 1031
paul@0 1032
    def stop_tracking_in_module(self):
paul@0 1033
paul@0 1034
        "Stop tracking attribute usage in the module."
paul@0 1035
paul@0 1036
        tracker = self.trackers[0]
paul@0 1037
        self.record_assignments_for_access(tracker)
paul@0 1038
        self.attr_usage[self.name] = tracker.get_all_usage()
paul@0 1039
        self.name_initialisers[self.name] = tracker.get_all_values()
paul@0 1040
paul@0 1041
    def record_assignments_for_access(self, tracker):
paul@0 1042
paul@0 1043
        """
paul@0 1044
        For the current path, use the given 'tracker' to record assignment
paul@0 1045
        version information for attribute accesses.
paul@0 1046
        """
paul@0 1047
paul@0 1048
        path = self.get_path_for_access()
paul@0 1049
paul@0 1050
        if not self.attr_accessor_branches.has_key(path):
paul@0 1051
            return
paul@0 1052
paul@0 1053
        init_item(self.attr_accessors, path, dict)
paul@0 1054
        attr_accessors = self.attr_accessors[path]
paul@0 1055
paul@0 1056
        # Obtain the branches applying during each access.
paul@0 1057
paul@0 1058
        for access, all_branches in self.attr_accessor_branches[path].items():
paul@0 1059
            name, attrnames = access
paul@0 1060
            init_item(attr_accessors, access, list)
paul@0 1061
paul@0 1062
            # Obtain the assignments applying to each branch.
paul@0 1063
paul@0 1064
            for branches in all_branches:
paul@0 1065
                positions = tracker.get_assignment_positions_for_branches(name, branches)
paul@0 1066
paul@0 1067
                # Detect missing name information.
paul@0 1068
paul@0 1069
                if None in positions:
paul@0 1070
                    globals = self.global_attr_accesses.get(path)
paul@0 1071
                    accesses = globals and globals.get(name)
paul@0 1072
                    if not accesses:
paul@0 1073
                        print >>sys.stderr, "In %s, %s may not be defined when used." % (
paul@0 1074
                            self.get_namespace_path(), name)
paul@0 1075
                    positions.remove(None)
paul@0 1076
paul@0 1077
                attr_accessors[access].append(positions)
paul@0 1078
paul@0 1079
    def record_branches_for_access(self, branches, name, attrnames):
paul@0 1080
paul@0 1081
        """
paul@0 1082
        Record the given 'branches' for an access involving the given 'name' and
paul@0 1083
        'attrnames'.
paul@0 1084
        """
paul@0 1085
paul@0 1086
        access = name, attrnames
paul@0 1087
        path = self.get_path_for_access()
paul@0 1088
paul@0 1089
        init_item(self.attr_accessor_branches, path, dict)
paul@0 1090
        attr_accessor_branches = self.attr_accessor_branches[path]
paul@0 1091
paul@0 1092
        init_item(attr_accessor_branches, access, list)
paul@0 1093
        attr_accessor_branches[access].append(branches)
paul@0 1094
paul@117 1095
    def record_access_details(self, name, attrnames, assignment, invocation):
paul@0 1096
paul@0 1097
        """
paul@0 1098
        For the given 'name' and 'attrnames', record an access indicating
paul@0 1099
        whether 'assignment' is occurring.
paul@0 1100
paul@0 1101
        These details correspond to accesses otherwise recorded by the attribute
paul@0 1102
        accessor and attribute access dictionaries.
paul@0 1103
        """
paul@0 1104
paul@0 1105
        access = name, attrnames
paul@0 1106
        path = self.get_path_for_access()
paul@0 1107
paul@0 1108
        init_item(self.attr_access_modifiers, path, dict)
paul@0 1109
        init_item(self.attr_access_modifiers[path], access, list)
paul@0 1110
paul@0 1111
        access_number = len(self.attr_access_modifiers[path][access])
paul@117 1112
        self.attr_access_modifiers[path][access].append((assignment, invocation))
paul@0 1113
        return access_number
paul@0 1114
paul@0 1115
    def record_global_access_details(self, name, attrnames):
paul@0 1116
paul@0 1117
        """
paul@0 1118
        Record details of a global access via the given 'name' involving the
paul@0 1119
        indicated 'attrnames'.
paul@0 1120
        """
paul@0 1121
paul@0 1122
        path = self.get_namespace_path()
paul@0 1123
paul@0 1124
        init_item(self.global_attr_accesses, path, dict)
paul@0 1125
        init_item(self.global_attr_accesses[path], name, set)
paul@0 1126
        self.global_attr_accesses[path][name].add(attrnames)
paul@0 1127
paul@0 1128
    # Namespace modification.
paul@0 1129
paul@0 1130
    def record_name(self, name):
paul@0 1131
paul@0 1132
        "Record the use of 'name' in a namespace."
paul@0 1133
paul@0 1134
        path = self.get_namespace_path()
paul@0 1135
        init_item(self.names_used, path, set)
paul@0 1136
        self.names_used[path].add(name)
paul@0 1137
paul@12 1138
    def set_module(self, name, module_name):
paul@0 1139
paul@0 1140
        """
paul@12 1141
        Set a module in the current namespace using the given 'name' associated
paul@12 1142
        with the corresponding 'module_name'.
paul@0 1143
        """
paul@0 1144
paul@0 1145
        if name:
paul@12 1146
            self.set_general_local(name, Reference("<module>", module_name))
paul@0 1147
paul@0 1148
    def set_definition(self, name, kind):
paul@0 1149
paul@0 1150
        """
paul@0 1151
        Set the definition having the given 'name' and 'kind'.
paul@0 1152
paul@0 1153
        Definitions are set in the static namespace hierarchy, but they can also
paul@0 1154
        be recorded for function locals.
paul@0 1155
        """
paul@0 1156
paul@0 1157
        if self.is_global(name):
paul@0 1158
            print >>sys.stderr, "In %s, %s is defined as being global." % (
paul@0 1159
                self.get_namespace_path(), name)
paul@0 1160
paul@0 1161
        path = self.get_object_path(name)
paul@0 1162
        self.set_object(path, kind)
paul@0 1163
paul@0 1164
        ref = self.get_object(path)
paul@0 1165
        if ref.get_kind() == "<var>":
paul@0 1166
            print >>sys.stderr, "In %s, %s is defined more than once." % (
paul@0 1167
                self.get_namespace_path(), name)
paul@0 1168
paul@0 1169
        if not self.is_global(name) and self.in_function:
paul@0 1170
            self.set_function_local(name, ref)
paul@0 1171
paul@0 1172
    def set_function_local(self, name, ref=None):
paul@0 1173
paul@0 1174
        "Set the local with the given 'name' and optional 'ref'."
paul@0 1175
paul@0 1176
        locals = self.function_locals[self.get_namespace_path()]
paul@0 1177
        multiple = not ref or locals.has_key(name) and locals[name] != ref
paul@0 1178
        locals[name] = multiple and Reference("<var>") or ref
paul@0 1179
paul@0 1180
    def assign_general_local(self, name, name_ref):
paul@0 1181
paul@0 1182
        """
paul@0 1183
        Set for 'name' the given 'name_ref', recording the name for attribute
paul@0 1184
        usage tracking.
paul@0 1185
        """
paul@0 1186
paul@0 1187
        self.set_general_local(name, name_ref)
paul@0 1188
        self.assign_name(name, name_ref)
paul@0 1189
paul@0 1190
    def set_general_local(self, name, value=None):
paul@0 1191
paul@0 1192
        """
paul@0 1193
        Set the 'name' with optional 'value' in any kind of local namespace,
paul@0 1194
        where the 'value' should be a reference if specified.
paul@0 1195
        """
paul@0 1196
paul@0 1197
        init_value = self.get_initialising_value(value)
paul@0 1198
paul@0 1199
        # Module global names.
paul@0 1200
paul@0 1201
        if self.is_global(name):
paul@0 1202
            path = self.get_global_path(name)
paul@0 1203
            self.set_object(path, init_value)
paul@0 1204
paul@0 1205
        # Function local names.
paul@0 1206
paul@0 1207
        elif self.in_function:
paul@0 1208
            path = self.get_object_path(name)
paul@0 1209
            self.set_function_local(name, init_value)
paul@0 1210
paul@0 1211
        # Other namespaces (classes).
paul@0 1212
paul@0 1213
        else:
paul@0 1214
            path = self.get_object_path(name)
paul@0 1215
            self.set_name(name, init_value)
paul@0 1216
paul@0 1217
    def set_name(self, name, ref=None):
paul@0 1218
paul@0 1219
        "Attach the 'name' with optional 'ref' to the current namespace."
paul@0 1220
paul@0 1221
        self.set_object(self.get_object_path(name), ref)
paul@0 1222
paul@0 1223
    def set_instance_attr(self, name, ref=None):
paul@0 1224
paul@0 1225
        """
paul@0 1226
        Add an instance attribute of the given 'name' to the current class,
paul@0 1227
        using the optional 'ref'.
paul@0 1228
        """
paul@0 1229
paul@0 1230
        init_item(self.instance_attrs, self.in_class, set)
paul@0 1231
        self.instance_attrs[self.in_class].add(name)
paul@0 1232
paul@0 1233
        if ref:
paul@0 1234
            init_item(self.instance_attr_constants, self.in_class, dict)
paul@0 1235
            self.instance_attr_constants[self.in_class][name] = ref
paul@0 1236
paul@0 1237
    def get_initialising_value(self, value):
paul@0 1238
paul@0 1239
        "Return a suitable initialiser reference for 'value'."
paul@0 1240
paul@25 1241
        # Includes LiteralSequenceRef, ResolvedNameRef...
paul@25 1242
paul@25 1243
        if isinstance(value, (NameRef, AccessRef, InstanceRef)):
paul@0 1244
            return value.reference()
paul@0 1245
paul@0 1246
        # In general, invocations do not produce known results. However, the
paul@0 1247
        # name initialisers are resolved once a module has been inspected.
paul@0 1248
paul@0 1249
        elif isinstance(value, InvocationRef):
paul@27 1250
            return value.reference()
paul@0 1251
paul@0 1252
        else:
paul@0 1253
            return value
paul@0 1254
paul@0 1255
    # Static, program-relative naming.
paul@0 1256
paul@0 1257
    def find_name(self, name):
paul@0 1258
paul@0 1259
        """
paul@0 1260
        Return the qualified name for the given 'name' used in the current
paul@0 1261
        non-function namespace.
paul@0 1262
        """
paul@0 1263
paul@0 1264
        path = self.get_namespace_path()
paul@0 1265
        ref = None
paul@0 1266
paul@0 1267
        if not self.in_function and name not in predefined_constants:
paul@0 1268
            if self.in_class:
paul@0 1269
                ref = self.get_object(self.get_object_path(name))
paul@0 1270
            if not ref:
paul@0 1271
                ref = self.get_global_or_builtin(name)
paul@0 1272
paul@0 1273
        return ref
paul@0 1274
paul@0 1275
    def get_class(self, node):
paul@0 1276
paul@0 1277
        """
paul@0 1278
        Use the given 'node' to obtain the identity of a class. Return a
paul@0 1279
        reference for the class. Unresolved dependencies are permitted and must
paul@0 1280
        be resolved later.
paul@0 1281
        """
paul@0 1282
paul@0 1283
        ref = self._get_class(node)
paul@0 1284
        return ref.has_kind(["<class>", "<depends>"]) and ref or None
paul@0 1285
paul@0 1286
    def _get_class(self, node):
paul@0 1287
paul@0 1288
        """
paul@0 1289
        Use the given 'node' to find a class definition. Return a reference to
paul@0 1290
        the class.
paul@0 1291
        """
paul@0 1292
paul@0 1293
        if isinstance(node, compiler.ast.Getattr):
paul@0 1294
paul@0 1295
            # Obtain the identity of the access target.
paul@0 1296
paul@0 1297
            ref = self._get_class(node.expr)
paul@0 1298
paul@0 1299
            # Where the target is a class or module, obtain the identity of the
paul@0 1300
            # attribute.
paul@0 1301
paul@0 1302
            if ref.has_kind(["<function>", "<var>"]):
paul@0 1303
                return None
paul@0 1304
            else:
paul@0 1305
                attrname = "%s.%s" % (ref.get_origin(), node.attrname)
paul@0 1306
                return self.get_object(attrname)
paul@0 1307
paul@0 1308
        # Names can be module-level or built-in.
paul@0 1309
paul@0 1310
        elif isinstance(node, compiler.ast.Name):
paul@0 1311
paul@0 1312
            # Record usage of the name and attempt to identify it.
paul@0 1313
paul@0 1314
            self.record_name(node.name)
paul@73 1315
            return self.find_name(node.name)
paul@0 1316
        else:
paul@0 1317
            return None
paul@0 1318
paul@0 1319
    def get_constant(self, name, value):
paul@0 1320
paul@0 1321
        "Return a constant reference for the given type 'name' and 'value'."
paul@0 1322
paul@12 1323
        ref = self.get_builtin_class(name)
paul@0 1324
        return self.get_constant_reference(ref, value)
paul@0 1325
paul@0 1326
    def get_literal_instance(self, n, name):
paul@0 1327
paul@0 1328
        "For node 'n', return a reference to an instance of 'name'."
paul@0 1329
paul@12 1330
        # Get a reference to the built-in class.
paul@0 1331
paul@12 1332
        ref = self.get_builtin_class(name)
paul@0 1333
paul@0 1334
        # Obtain the details of the literal itself.
paul@0 1335
        # An alias to the type is generated for sequences.
paul@0 1336
paul@0 1337
        if name in ("dict", "list", "tuple"):
paul@0 1338
            self.set_special_literal(name, ref)
paul@0 1339
            return self.process_literal_sequence_node(n, name, ref, LiteralSequenceRef)
paul@0 1340
paul@0 1341
        # Constant values are independently recorded.
paul@0 1342
paul@0 1343
        else:
paul@0 1344
            return self.get_constant_reference(ref, n.value)
paul@0 1345
paul@17 1346
    # Special names.
paul@0 1347
paul@17 1348
    def get_special(self, name):
paul@0 1349
paul@17 1350
        "Return any stored value for the given special 'name'."
paul@0 1351
paul@17 1352
        return self.special.get(name)
paul@17 1353
paul@17 1354
    def set_special(self, name, value):
paul@0 1355
paul@17 1356
        """
paul@17 1357
        Set a special 'name' that merely tracks the use of an implicit object
paul@17 1358
        'value'.
paul@17 1359
        """
paul@0 1360
paul@17 1361
        self.special[name] = value
paul@17 1362
paul@17 1363
    def set_special_literal(self, name, ref):
paul@0 1364
paul@17 1365
        """
paul@17 1366
        Set a special name for the literal type 'name' having type 'ref'. Such
paul@17 1367
        special names provide a way of referring to literal object types.
paul@17 1368
        """
paul@0 1369
paul@17 1370
        literal_name = "$L%s" % name
paul@17 1371
        value = ResolvedNameRef(literal_name, ref)
paul@17 1372
        self.set_special(literal_name, value)
paul@0 1373
paul@0 1374
    # Functions and invocations.
paul@0 1375
paul@36 1376
    def set_invocation_usage(self):
paul@36 1377
paul@36 1378
        """
paul@36 1379
        Discard the current invocation storage figures, retaining the maximum
paul@36 1380
        values.
paul@36 1381
        """
paul@36 1382
paul@36 1383
        for path, (current, maximum) in self.function_targets.items():
paul@36 1384
            self.importer.function_targets[path] = self.function_targets[path] = maximum
paul@36 1385
paul@36 1386
        for path, (current, maximum) in self.function_arguments.items():
paul@36 1387
            self.importer.function_arguments[path] = self.function_arguments[path] = maximum
paul@36 1388
paul@0 1389
    def allocate_arguments(self, path, args):
paul@0 1390
paul@0 1391
        """
paul@0 1392
        Allocate temporary argument storage using current and maximum
paul@0 1393
        requirements for the given 'path' and 'args'.
paul@0 1394
        """
paul@0 1395
paul@0 1396
        init_item(self.function_targets, path, lambda: [0, 0])
paul@0 1397
        t = self.function_targets[path]
paul@0 1398
        t[0] += 1
paul@0 1399
        t[1] = max(t[0], t[1])
paul@0 1400
paul@0 1401
        init_item(self.function_arguments, path, lambda: [0, 0])
paul@0 1402
        t = self.function_arguments[path]
paul@0 1403
        t[0] += len(args) + 1
paul@0 1404
        t[1] = max(t[0], t[1])
paul@0 1405
paul@0 1406
    def deallocate_arguments(self, path, args):
paul@0 1407
paul@0 1408
        "Deallocate temporary argument storage for the given 'path' and 'args'."
paul@0 1409
paul@0 1410
        self.function_targets[path][0] -= 1
paul@0 1411
        self.function_arguments[path][0] -= len(args) + 1
paul@0 1412
paul@0 1413
# vim: tabstop=4 expandtab shiftwidth=4