Lichen

Annotated inspector.py

543:b7334adb7dec
2017-02-04 Paul Boddie Handle situations where a global accidentally refers to a built-in module.
paul@0 1
#!/usr/bin/env python
paul@0 2
paul@0 3
"""
paul@0 4
Inspect and obtain module structure.
paul@0 5
paul@0 6
Copyright (C) 2007, 2008, 2009, 2010, 2011, 2012, 2013,
paul@479 7
              2014, 2015, 2016, 2017 Paul Boddie <paul@boddie.org.uk>
paul@0 8
paul@0 9
This program is free software; you can redistribute it and/or modify it under
paul@0 10
the terms of the GNU General Public License as published by the Free Software
paul@0 11
Foundation; either version 3 of the License, or (at your option) any later
paul@0 12
version.
paul@0 13
paul@0 14
This program is distributed in the hope that it will be useful, but WITHOUT
paul@0 15
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
paul@0 16
FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
paul@0 17
details.
paul@0 18
paul@0 19
You should have received a copy of the GNU General Public License along with
paul@0 20
this program.  If not, see <http://www.gnu.org/licenses/>.
paul@0 21
"""
paul@0 22
paul@0 23
from branching import BranchTracker
paul@538 24
from common import CommonModule, get_argnames, init_item, predefined_constants
paul@26 25
from modules import BasicModule, CacheWritingModule, InspectionNaming
paul@3 26
from errors import InspectError
paul@0 27
from referencing import Reference
paul@12 28
from resolving import NameResolving
paul@12 29
from results import AccessRef, InstanceRef, InvocationRef, LiteralSequenceRef, \
paul@226 30
                    LocalNameRef, NameRef, ResolvedNameRef, VariableRef
paul@0 31
import compiler
paul@0 32
import sys
paul@0 33
paul@26 34
class InspectedModule(BasicModule, CacheWritingModule, NameResolving, InspectionNaming):
paul@0 35
paul@0 36
    "A module inspector."
paul@0 37
paul@0 38
    def __init__(self, name, importer):
paul@13 39
paul@13 40
        "Initialise the module with basic details."
paul@13 41
paul@0 42
        BasicModule.__init__(self, name, importer)
paul@12 43
paul@0 44
        self.in_class = False
paul@0 45
        self.in_conditional = False
paul@110 46
paul@110 47
        # Accesses to global attributes.
paul@110 48
paul@0 49
        self.global_attr_accesses = {}
paul@0 50
paul@0 51
        # Usage tracking.
paul@0 52
paul@0 53
        self.trackers = []
paul@0 54
        self.attr_accessor_branches = {}
paul@0 55
paul@0 56
    def __repr__(self):
paul@0 57
        return "InspectedModule(%r, %r)" % (self.name, self.importer)
paul@0 58
paul@27 59
    # Principal methods.
paul@27 60
paul@0 61
    def parse(self, filename):
paul@0 62
paul@0 63
        "Parse the file having the given 'filename'."
paul@0 64
paul@0 65
        self.parse_file(filename)
paul@0 66
paul@0 67
        # Inspect the module.
paul@0 68
paul@0 69
        self.start_tracking_in_module()
paul@0 70
paul@0 71
        # Detect and record imports and globals declared in the module.
paul@0 72
paul@0 73
        self.process_structure(self.astnode)
paul@0 74
paul@0 75
        # Set the class of the module after the definition has occurred.
paul@0 76
paul@269 77
        ref = self.get_builtin("module")
paul@0 78
        self.set_name("__class__", ref)
paul@499 79
        self.set_name("__name__", self.get_constant("string", self.name).reference())
paul@271 80
        self.set_name("__file__", self.get_constant("string", filename).reference())
paul@0 81
paul@406 82
        # Reserve a constant for the encoding.
paul@406 83
paul@406 84
        if self.encoding:
paul@406 85
            self.get_constant("string", self.encoding)
paul@406 86
paul@0 87
        # Get module-level attribute usage details.
paul@0 88
paul@0 89
        self.stop_tracking_in_module()
paul@0 90
paul@27 91
        # Collect external name references.
paul@0 92
paul@27 93
        self.collect_names()
paul@0 94
paul@12 95
    def complete(self):
paul@0 96
paul@12 97
        "Complete the module inspection."
paul@0 98
paul@12 99
        # Resolve names not definitively mapped to objects.
paul@0 100
paul@12 101
        self.resolve()
paul@0 102
paul@12 103
        # Define the invocation requirements in each namespace.
paul@0 104
paul@12 105
        self.set_invocation_usage()
paul@0 106
paul@12 107
        # Propagate to the importer information needed in subsequent activities.
paul@0 108
paul@12 109
        self.propagate()
paul@0 110
paul@27 111
    # Accessory methods.
paul@0 112
paul@27 113
    def collect_names(self):
paul@0 114
paul@27 115
        "Collect the names used by each scope."
paul@0 116
paul@0 117
        for path in self.names_used.keys():
paul@27 118
            self.collect_names_for_path(path)
paul@27 119
paul@27 120
    def collect_names_for_path(self, path):
paul@0 121
paul@33 122
        """
paul@33 123
        Collect the names used by the given 'path'. These are propagated to the
paul@33 124
        importer in advance of any dependency resolution.
paul@33 125
        """
paul@0 126
paul@0 127
        names = self.names_used.get(path)
paul@0 128
        if not names:
paul@0 129
            return
paul@0 130
paul@0 131
        in_function = self.function_locals.has_key(path)
paul@0 132
paul@0 133
        for name in names:
paul@135 134
            if in_function and name in self.function_locals[path]:
paul@135 135
                continue
paul@135 136
paul@135 137
            key = "%s.%s" % (path, name)
paul@135 138
paul@35 139
            # Find local definitions (within dynamic namespaces).
paul@0 140
paul@27 141
            ref = self.get_resolved_object(key)
paul@0 142
            if ref:
paul@40 143
                self.set_name_reference(key, ref)
paul@0 144
                continue
paul@0 145
paul@142 146
            # Find global.
paul@0 147
paul@142 148
            ref = self.get_global(name)
paul@27 149
            if ref:
paul@40 150
                self.set_name_reference(key, ref)
paul@0 151
                continue
paul@0 152
paul@40 153
            # Find presumed built-in definitions.
paul@0 154
paul@40 155
            ref = self.get_builtin(name)
paul@40 156
            self.set_name_reference(key, ref)
paul@0 157
paul@40 158
    def set_name_reference(self, path, ref):
paul@0 159
paul@40 160
        "Map the given name 'path' to 'ref'."
paul@0 161
paul@40 162
        self.importer.all_name_references[path] = self.name_references[path] = ref
paul@0 163
paul@0 164
    # Module structure traversal.
paul@0 165
paul@0 166
    def process_structure_node(self, n):
paul@0 167
paul@0 168
        "Process the individual node 'n'."
paul@0 169
paul@205 170
        path = self.get_namespace_path()
paul@205 171
paul@0 172
        # Module global detection.
paul@0 173
paul@0 174
        if isinstance(n, compiler.ast.Global):
paul@0 175
            self.process_global_node(n)
paul@0 176
paul@0 177
        # Module import declarations.
paul@0 178
paul@0 179
        elif isinstance(n, compiler.ast.From):
paul@0 180
            self.process_from_node(n)
paul@0 181
paul@0 182
        elif isinstance(n, compiler.ast.Import):
paul@0 183
            self.process_import_node(n)
paul@0 184
paul@0 185
        # Nodes using operator module functions.
paul@0 186
paul@0 187
        elif isinstance(n, compiler.ast.Operator):
paul@0 188
            return self.process_operator_node(n)
paul@0 189
paul@0 190
        elif isinstance(n, compiler.ast.AugAssign):
paul@0 191
            self.process_augassign_node(n)
paul@0 192
paul@0 193
        elif isinstance(n, compiler.ast.Compare):
paul@0 194
            return self.process_compare_node(n)
paul@0 195
paul@0 196
        elif isinstance(n, compiler.ast.Slice):
paul@0 197
            return self.process_slice_node(n)
paul@0 198
paul@0 199
        elif isinstance(n, compiler.ast.Sliceobj):
paul@0 200
            return self.process_sliceobj_node(n)
paul@0 201
paul@0 202
        elif isinstance(n, compiler.ast.Subscript):
paul@0 203
            return self.process_subscript_node(n)
paul@0 204
paul@0 205
        # Namespaces within modules.
paul@0 206
paul@0 207
        elif isinstance(n, compiler.ast.Class):
paul@0 208
            self.process_class_node(n)
paul@0 209
paul@0 210
        elif isinstance(n, compiler.ast.Function):
paul@0 211
            self.process_function_node(n, n.name)
paul@0 212
paul@0 213
        elif isinstance(n, compiler.ast.Lambda):
paul@0 214
            return self.process_lambda_node(n)
paul@0 215
paul@0 216
        # Assignments.
paul@0 217
paul@0 218
        elif isinstance(n, compiler.ast.Assign):
paul@0 219
paul@0 220
            # Handle each assignment node.
paul@0 221
paul@0 222
            for node in n.nodes:
paul@0 223
                self.process_assignment_node(node, n.expr)
paul@0 224
paul@0 225
        # Assignments within non-Assign nodes.
paul@0 226
paul@0 227
        elif isinstance(n, compiler.ast.AssName):
paul@205 228
            raise InspectError("Name assignment appearing outside assignment statement.", path, n)
paul@0 229
paul@0 230
        elif isinstance(n, compiler.ast.AssAttr):
paul@205 231
            raise InspectError("Attribute assignment appearing outside assignment statement.", path, n)
paul@0 232
paul@0 233
        # Accesses.
paul@0 234
paul@0 235
        elif isinstance(n, compiler.ast.Getattr):
paul@0 236
            return self.process_attribute_access(n)
paul@0 237
paul@0 238
        # Name recording for later testing.
paul@0 239
paul@0 240
        elif isinstance(n, compiler.ast.Name):
paul@0 241
            return self.process_name_node(n)
paul@0 242
paul@0 243
        # Conditional statement tracking.
paul@0 244
paul@0 245
        elif isinstance(n, compiler.ast.For):
paul@0 246
            self.process_for_node(n)
paul@0 247
paul@0 248
        elif isinstance(n, compiler.ast.While):
paul@0 249
            self.process_while_node(n)
paul@0 250
paul@0 251
        elif isinstance(n, compiler.ast.If):
paul@0 252
            self.process_if_node(n)
paul@0 253
paul@0 254
        elif isinstance(n, (compiler.ast.And, compiler.ast.Or)):
paul@0 255
            return self.process_logical_node(n)
paul@0 256
paul@0 257
        # Exception control-flow tracking.
paul@0 258
paul@0 259
        elif isinstance(n, compiler.ast.TryExcept):
paul@0 260
            self.process_try_node(n)
paul@0 261
paul@0 262
        elif isinstance(n, compiler.ast.TryFinally):
paul@0 263
            self.process_try_finally_node(n)
paul@0 264
paul@0 265
        # Control-flow modification statements.
paul@0 266
paul@0 267
        elif isinstance(n, compiler.ast.Break):
paul@0 268
            self.trackers[-1].suspend_broken_branch()
paul@0 269
paul@0 270
        elif isinstance(n, compiler.ast.Continue):
paul@0 271
            self.trackers[-1].suspend_continuing_branch()
paul@0 272
paul@0 273
        elif isinstance(n, compiler.ast.Raise):
paul@0 274
            self.process_structure(n)
paul@0 275
            self.trackers[-1].abandon_branch()
paul@0 276
paul@0 277
        elif isinstance(n, compiler.ast.Return):
paul@0 278
            self.process_structure(n)
paul@0 279
            self.trackers[-1].abandon_returning_branch()
paul@0 280
paul@173 281
        # Print statements.
paul@173 282
paul@173 283
        elif isinstance(n, (compiler.ast.Print, compiler.ast.Printnl)):
paul@173 284
            self.process_print_node(n)
paul@173 285
paul@0 286
        # Invocations.
paul@0 287
paul@0 288
        elif isinstance(n, compiler.ast.CallFunc):
paul@0 289
            return self.process_invocation_node(n)
paul@0 290
paul@0 291
        # Constant usage.
paul@0 292
paul@0 293
        elif isinstance(n, compiler.ast.Const):
paul@405 294
            return self.get_literal_instance(n)
paul@0 295
paul@0 296
        elif isinstance(n, compiler.ast.Dict):
paul@0 297
            return self.get_literal_instance(n, "dict")
paul@0 298
paul@0 299
        elif isinstance(n, compiler.ast.List):
paul@0 300
            return self.get_literal_instance(n, "list")
paul@0 301
paul@0 302
        elif isinstance(n, compiler.ast.Tuple):
paul@0 303
            return self.get_literal_instance(n, "tuple")
paul@0 304
paul@0 305
        # All other nodes are processed depth-first.
paul@0 306
paul@0 307
        else:
paul@0 308
            self.process_structure(n)
paul@0 309
paul@0 310
        # By default, no expression details are returned.
paul@0 311
paul@0 312
        return None
paul@0 313
paul@0 314
    # Specific node handling.
paul@0 315
paul@0 316
    def process_assignment_node(self, n, expr):
paul@0 317
paul@0 318
        "Process the individual node 'n' to be assigned the contents of 'expr'."
paul@0 319
paul@0 320
        # Names and attributes are assigned the entire expression.
paul@0 321
paul@0 322
        if isinstance(n, compiler.ast.AssName):
paul@61 323
            if n.name == "self":
paul@61 324
                raise InspectError("Redefinition of self is not allowed.", self.get_namespace_path(), n)
paul@0 325
paul@0 326
            name_ref = expr and self.process_structure_node(expr)
paul@0 327
paul@0 328
            # Name assignments populate either function namespaces or the
paul@0 329
            # general namespace hierarchy.
paul@0 330
paul@0 331
            self.assign_general_local(n.name, name_ref)
paul@0 332
paul@0 333
            # Record usage of the name.
paul@0 334
paul@0 335
            self.record_name(n.name)
paul@0 336
paul@0 337
        elif isinstance(n, compiler.ast.AssAttr):
paul@124 338
            if expr:
paul@124 339
                expr = self.process_structure_node(expr)
paul@107 340
paul@107 341
            in_assignment = self.in_assignment
paul@389 342
            self.in_assignment = True
paul@0 343
            self.process_attribute_access(n)
paul@107 344
            self.in_assignment = in_assignment
paul@0 345
paul@0 346
        # Lists and tuples are matched against the expression and their
paul@0 347
        # items assigned to expression items.
paul@0 348
paul@0 349
        elif isinstance(n, (compiler.ast.AssList, compiler.ast.AssTuple)):
paul@0 350
            self.process_assignment_node_items(n, expr)
paul@0 351
paul@0 352
        # Slices and subscripts are permitted within assignment nodes.
paul@0 353
paul@0 354
        elif isinstance(n, compiler.ast.Slice):
paul@0 355
            self.process_slice_node(n, expr)
paul@0 356
paul@0 357
        elif isinstance(n, compiler.ast.Subscript):
paul@0 358
            self.process_subscript_node(n, expr)
paul@0 359
paul@0 360
    def process_attribute_access(self, n):
paul@0 361
paul@0 362
        "Process the given attribute access node 'n'."
paul@0 363
paul@107 364
        # Obtain any completed chain and return the reference to it.
paul@107 365
paul@0 366
        name_ref = self.process_attribute_chain(n)
paul@107 367
paul@0 368
        if self.have_access_expression(n):
paul@0 369
            return name_ref
paul@0 370
paul@0 371
        # Where the start of the chain of attributes has been reached, determine
paul@0 372
        # the complete access.
paul@0 373
paul@0 374
        # Given a non-access node, this chain can be handled in its entirety,
paul@0 375
        # either being name-based and thus an access rooted on a name, or being
paul@0 376
        # based on some other node and thus an anonymous access of some kind.
paul@0 377
paul@0 378
        path = self.get_namespace_path()
paul@0 379
paul@0 380
        # Start with the the full attribute chain.
paul@0 381
paul@0 382
        remaining = self.attrs
paul@0 383
        attrnames = ".".join(remaining)
paul@0 384
paul@0 385
        # If the accessor cannot be identified, or where attributes
paul@0 386
        # remain in an attribute chain, record the anonymous accesses.
paul@0 387
paul@0 388
        if not isinstance(name_ref, NameRef): # includes ResolvedNameRef
paul@0 389
paul@0 390
            init_item(self.attr_accesses, path, set)
paul@0 391
            self.attr_accesses[path].add(attrnames)
paul@0 392
paul@117 393
            self.record_access_details(None, attrnames, self.in_assignment,
paul@117 394
                self.in_invocation)
paul@0 395
            del self.attrs[0]
paul@0 396
            return
paul@0 397
paul@0 398
        # Name-based accesses will handle the first attribute in a
paul@0 399
        # chain.
paul@0 400
paul@0 401
        else:
paul@0 402
            attrname = remaining[0]
paul@0 403
paul@0 404
            # Attribute assignments are used to identify instance attributes.
paul@0 405
paul@0 406
            if isinstance(n, compiler.ast.AssAttr) and \
paul@0 407
                self.in_class and self.in_function and n.expr.name == "self":
paul@0 408
paul@0 409
                self.set_instance_attr(attrname)
paul@0 410
paul@0 411
            # Record attribute usage using any name local to this namespace,
paul@0 412
            # if assigned in the namespace, or using an external name
paul@0 413
            # (presently just globals within classes).
paul@0 414
paul@0 415
            name = self.get_name_for_tracking(name_ref.name, name_ref.final())
paul@0 416
            tracker = self.trackers[-1]
paul@0 417
paul@0 418
            immediate_access = len(self.attrs) == 1
paul@0 419
            assignment = immediate_access and isinstance(n, compiler.ast.AssAttr)
paul@0 420
paul@0 421
            # Record global-based chains for subsequent resolution.
paul@0 422
paul@0 423
            is_global = self.in_function and not self.function_locals[path].has_key(name) or \
paul@0 424
                        not self.in_function
paul@0 425
paul@0 426
            if is_global:
paul@0 427
                self.record_global_access_details(name, attrnames)
paul@0 428
paul@0 429
            # Make sure the name is being tracked: global names will not
paul@0 430
            # already be initialised in a branch and must be added
paul@0 431
            # explicitly.
paul@0 432
paul@0 433
            if not tracker.have_name(name):
paul@0 434
                tracker.assign_names([name])
paul@0 435
                if self.in_function:
paul@0 436
                    self.scope_globals[path].add(name)
paul@0 437
paul@0 438
            # Record attribute usage in the tracker, and record the branch
paul@0 439
            # information for the access.
paul@0 440
paul@110 441
            branches = tracker.use_attribute(name, attrname, self.in_invocation, assignment)
paul@0 442
paul@0 443
            if not branches:
paul@84 444
                raise InspectError("Name %s is accessed using %s before an assignment." % (
paul@84 445
                    name, attrname), path, n)
paul@0 446
paul@0 447
            self.record_branches_for_access(branches, name, attrnames)
paul@117 448
            access_number = self.record_access_details(name, attrnames,
paul@117 449
                self.in_assignment, self.in_invocation)
paul@107 450
paul@107 451
            del self.attrs[0]
paul@0 452
            return AccessRef(name, attrnames, access_number)
paul@0 453
paul@0 454
    def process_class_node(self, n):
paul@0 455
paul@0 456
        "Process the given class node 'n'."
paul@0 457
paul@0 458
        path = self.get_namespace_path()
paul@0 459
paul@0 460
        # To avoid notions of class "versions" where the same definition
paul@0 461
        # might be parameterised with different state and be referenced
paul@0 462
        # elsewhere (as base classes, for example), classes in functions or
paul@0 463
        # conditions are forbidden.
paul@0 464
paul@0 465
        if self.in_function or self.in_conditional:
paul@0 466
            print >>sys.stderr, "In %s, class %s in function or conditional statement ignored." % (
paul@0 467
                path, n.name)
paul@0 468
            return
paul@0 469
paul@0 470
        # Resolve base classes.
paul@0 471
paul@0 472
        bases = []
paul@0 473
paul@0 474
        for base in n.bases:
paul@0 475
            base_class = self.get_class(base)
paul@0 476
paul@0 477
            if not base_class:
paul@12 478
                print >>sys.stderr, "In %s, class %s has unidentifiable base class: %s" % (
paul@12 479
                    path, n.name, base)
paul@0 480
                return
paul@0 481
            else:
paul@0 482
                bases.append(base_class)
paul@0 483
paul@348 484
        # Detect conflicting definitions. Such definitions cause conflicts in
paul@348 485
        # the storage of namespace-related information.
paul@348 486
paul@348 487
        class_name = self.get_object_path(n.name)
paul@422 488
        ref = self.get_object(class_name, defer=False)
paul@348 489
paul@422 490
        if ref and ref.static():
paul@348 491
            raise InspectError("Multiple definitions for the same name are not permitted.", class_name, n)
paul@348 492
paul@0 493
        # Record bases for the class and retain the class name.
paul@107 494
        # Note that the function class does not inherit from the object class.
paul@0 495
paul@107 496
        if not bases and class_name != "__builtins__.core.object" and \
paul@107 497
                         class_name != "__builtins__.core.function":
paul@107 498
paul@0 499
            ref = self.get_object("__builtins__.object")
paul@0 500
            bases.append(ref)
paul@0 501
paul@0 502
        self.importer.classes[class_name] = self.classes[class_name] = bases
paul@0 503
        self.importer.subclasses[class_name] = set()
paul@0 504
        self.scope_globals[class_name] = set()
paul@0 505
paul@0 506
        # Set the definition before entering the namespace rather than
paul@0 507
        # afterwards because methods may reference it. In normal Python,
paul@0 508
        # a class is not accessible until the definition is complete, but
paul@0 509
        # methods can generally reference it since upon being called the
paul@0 510
        # class will already exist.
paul@0 511
paul@0 512
        self.set_definition(n.name, "<class>")
paul@0 513
paul@0 514
        in_class = self.in_class
paul@0 515
        self.in_class = class_name
paul@0 516
        self.set_instance_attr("__class__", Reference("<class>", class_name))
paul@0 517
        self.enter_namespace(n.name)
paul@107 518
paul@107 519
        # Do not provide the special instantiator attributes on the function
paul@107 520
        # class. Function instances provide these attributes.
paul@107 521
paul@107 522
        if class_name != "__builtins__.core.function":
paul@107 523
            self.set_name("__fn__") # special instantiator attribute
paul@107 524
            self.set_name("__args__") # special instantiator attribute
paul@107 525
paul@499 526
        # Provide leafname and parent attributes.
paul@489 527
paul@499 528
        parent, leafname = class_name.rsplit(".", 1)
paul@499 529
        self.set_name("__name__", self.get_constant("string", leafname).reference())
paul@499 530
        self.set_name("__parent__")
paul@274 531
paul@0 532
        self.process_structure_node(n.code)
paul@0 533
        self.exit_namespace()
paul@0 534
        self.in_class = in_class
paul@0 535
paul@0 536
    def process_from_node(self, n):
paul@0 537
paul@0 538
        "Process the given node 'n', importing from another module."
paul@0 539
paul@0 540
        path = self.get_namespace_path()
paul@0 541
paul@12 542
        module_name, names = self.get_module_name(n)
paul@12 543
        if module_name == self.name:
paul@12 544
            raise InspectError("Cannot import from the current module.", path, n)
paul@0 545
paul@18 546
        self.queue_module(module_name)
paul@0 547
paul@0 548
        # Attempt to obtain the referenced objects.
paul@0 549
paul@0 550
        for name, alias in n.names:
paul@0 551
            if name == "*":
paul@12 552
                raise InspectError("Only explicitly specified names can be imported from modules.", path, n)
paul@0 553
paul@0 554
            # Explicit names.
paul@0 555
paul@12 556
            ref = self.import_name_from_module(name, module_name)
paul@0 557
            value = ResolvedNameRef(alias or name, ref)
paul@0 558
            self.set_general_local(alias or name, value)
paul@0 559
paul@0 560
    def process_function_node(self, n, name):
paul@0 561
paul@0 562
        """
paul@0 563
        Process the given function or lambda node 'n' with the given 'name'.
paul@0 564
        """
paul@0 565
paul@0 566
        is_lambda = isinstance(n, compiler.ast.Lambda)
paul@0 567
paul@0 568
        # Where a function is declared conditionally, use a separate name for
paul@0 569
        # the definition, and assign the definition to the stated name.
paul@0 570
paul@0 571
        if (self.in_conditional or self.in_function) and not is_lambda:
paul@0 572
            original_name = name
paul@0 573
            name = self.get_lambda_name()
paul@0 574
        else:
paul@0 575
            original_name = None
paul@0 576
paul@348 577
        # Detect conflicting definitions. Such definitions cause conflicts in
paul@348 578
        # the storage of namespace-related information.
paul@348 579
paul@348 580
        function_name = self.get_object_path(name)
paul@422 581
        ref = self.get_object(function_name, defer=False)
paul@348 582
paul@422 583
        if ref and ref.static():
paul@348 584
            raise InspectError("Multiple definitions for the same name are not permitted.", function_name, n)
paul@348 585
paul@0 586
        # Initialise argument and local records.
paul@0 587
paul@46 588
        argnames = get_argnames(n.argnames)
paul@48 589
        is_method = self.in_class and not self.in_function
paul@0 590
paul@48 591
        # Remove explicit "self" from method parameters.
paul@46 592
paul@48 593
        if is_method and argnames and argnames[0] == "self":
paul@48 594
            del argnames[0]
paul@48 595
paul@48 596
        # Copy and propagate the parameters.
paul@46 597
paul@46 598
        self.importer.function_parameters[function_name] = \
paul@109 599
            self.function_parameters[function_name] = argnames[:]
paul@46 600
paul@46 601
        # Define all arguments/parameters in the local namespace.
paul@46 602
paul@109 603
        locals = \
paul@109 604
            self.importer.function_locals[function_name] = \
paul@109 605
            self.function_locals[function_name] = {}
paul@0 606
paul@48 607
        # Insert "self" into method locals.
paul@48 608
paul@48 609
        if is_method:
paul@48 610
            argnames.insert(0, "self")
paul@48 611
paul@47 612
        # Define "self" in terms of the class if in a method.
paul@47 613
        # This does not diminish the need for type-narrowing in the deducer.
paul@47 614
paul@47 615
        if argnames:
paul@48 616
            if self.in_class and not self.in_function and argnames[0] == "self":
paul@47 617
                locals[argnames[0]] = Reference("<instance>", self.in_class)
paul@47 618
            else:
paul@47 619
                locals[argnames[0]] = Reference("<var>")
paul@47 620
paul@47 621
        for argname in argnames[1:]:
paul@0 622
            locals[argname] = Reference("<var>")
paul@0 623
paul@0 624
        globals = self.scope_globals[function_name] = set()
paul@0 625
paul@0 626
        # Process the defaults.
paul@0 627
paul@0 628
        defaults = self.importer.function_defaults[function_name] = \
paul@0 629
                   self.function_defaults[function_name] = []
paul@0 630
paul@0 631
        for argname, default in compiler.ast.get_defaults(n):
paul@0 632
            if default:
paul@0 633
paul@0 634
                # Obtain any reference for the default.
paul@0 635
paul@0 636
                name_ref = self.process_structure_node(default)
paul@0 637
                defaults.append((argname, name_ref.is_name() and name_ref.reference() or Reference("<var>")))
paul@0 638
paul@0 639
        # Reset conditional tracking to focus on the function contents.
paul@0 640
paul@0 641
        in_conditional = self.in_conditional
paul@0 642
        self.in_conditional = False
paul@0 643
paul@0 644
        in_function = self.in_function
paul@0 645
        self.in_function = function_name
paul@0 646
paul@0 647
        self.enter_namespace(name)
paul@0 648
paul@499 649
        # Define a leafname attribute value for the function instance.
paul@251 650
paul@251 651
        ref = self.get_builtin_class("string")
paul@489 652
        self.reserve_constant(function_name, name, ref.get_origin())
paul@251 653
paul@0 654
        # Track attribute usage within the namespace.
paul@0 655
paul@0 656
        path = self.get_namespace_path()
paul@0 657
paul@0 658
        self.start_tracking(locals)
paul@0 659
        self.process_structure_node(n.code)
paul@0 660
        self.stop_tracking()
paul@0 661
paul@1 662
        # Exit to the parent.
paul@0 663
paul@0 664
        self.exit_namespace()
paul@0 665
paul@0 666
        # Update flags.
paul@0 667
paul@0 668
        self.in_function = in_function
paul@0 669
        self.in_conditional = in_conditional
paul@0 670
paul@0 671
        # Define the function using the appropriate name.
paul@0 672
paul@0 673
        self.set_definition(name, "<function>")
paul@0 674
paul@0 675
        # Where a function is set conditionally, assign the name.
paul@0 676
paul@0 677
        if original_name:
paul@322 678
            self.process_assignment_for_object(original_name, compiler.ast.Name(name))
paul@0 679
paul@0 680
    def process_global_node(self, n):
paul@0 681
paul@0 682
        """
paul@0 683
        Process the given "global" node 'n'.
paul@0 684
        """
paul@0 685
paul@0 686
        path = self.get_namespace_path()
paul@0 687
paul@0 688
        if path != self.name:
paul@0 689
            self.scope_globals[path].update(n.names)
paul@0 690
paul@0 691
    def process_if_node(self, n):
paul@0 692
paul@0 693
        """
paul@0 694
        Process the given "if" node 'n'.
paul@0 695
        """
paul@0 696
paul@0 697
        tracker = self.trackers[-1]
paul@0 698
        tracker.new_branchpoint()
paul@0 699
paul@0 700
        for test, body in n.tests:
paul@0 701
            self.process_structure_node(test)
paul@0 702
paul@0 703
            tracker.new_branch()
paul@0 704
paul@0 705
            in_conditional = self.in_conditional
paul@0 706
            self.in_conditional = True
paul@0 707
            self.process_structure_node(body)
paul@0 708
            self.in_conditional = in_conditional
paul@0 709
paul@0 710
            tracker.shelve_branch()
paul@0 711
paul@0 712
        # Maintain a branch for the else clause.
paul@0 713
paul@0 714
        tracker.new_branch()
paul@0 715
        if n.else_:
paul@0 716
            self.process_structure_node(n.else_)
paul@0 717
        tracker.shelve_branch()
paul@0 718
paul@0 719
        tracker.merge_branches()
paul@0 720
paul@0 721
    def process_import_node(self, n):
paul@0 722
paul@0 723
        "Process the given import node 'n'."
paul@0 724
paul@0 725
        path = self.get_namespace_path()
paul@0 726
paul@0 727
        # Load the mentioned module.
paul@0 728
paul@0 729
        for name, alias in n.names:
paul@12 730
            if name == self.name:
paul@12 731
                raise InspectError("Cannot import the current module.", path, n)
paul@0 732
paul@13 733
            self.set_module(alias or name.split(".")[-1], name)
paul@18 734
            self.queue_module(name, True)
paul@0 735
paul@0 736
    def process_invocation_node(self, n):
paul@0 737
paul@0 738
        "Process the given invocation node 'n'."
paul@0 739
paul@0 740
        path = self.get_namespace_path()
paul@0 741
paul@0 742
        self.allocate_arguments(path, n.args)
paul@0 743
paul@0 744
        try:
paul@107 745
            # Communicate to the invocation target expression that it forms the
paul@107 746
            # target of an invocation, potentially affecting attribute accesses.
paul@0 747
paul@88 748
            in_invocation = self.in_invocation
paul@88 749
            self.in_invocation = True
paul@107 750
paul@107 751
            # Process the expression, obtaining any identified reference.
paul@107 752
paul@0 753
            name_ref = self.process_structure_node(n.node)
paul@223 754
            self.in_invocation = False
paul@0 755
paul@0 756
            # Process the arguments.
paul@0 757
paul@0 758
            for arg in n.args:
paul@0 759
                self.process_structure_node(arg)
paul@0 760
paul@223 761
            self.in_invocation = in_invocation
paul@223 762
paul@0 763
            # Detect class invocations.
paul@0 764
paul@0 765
            if isinstance(name_ref, ResolvedNameRef) and name_ref.has_kind("<class>"):
paul@0 766
                return InstanceRef(name_ref.reference().instance_of())
paul@0 767
paul@0 768
            elif isinstance(name_ref, NameRef):
paul@0 769
                return InvocationRef(name_ref)
paul@0 770
paul@226 771
            # Provide a general reference to indicate that something is produced
paul@226 772
            # by the invocation, useful for retaining assignment expression
paul@226 773
            # details.
paul@226 774
paul@226 775
            return VariableRef()
paul@0 776
paul@0 777
        finally:
paul@0 778
            self.deallocate_arguments(path, n.args)
paul@0 779
paul@0 780
    def process_lambda_node(self, n):
paul@0 781
paul@0 782
        "Process the given lambda node 'n'."
paul@0 783
paul@0 784
        name = self.get_lambda_name()
paul@0 785
        self.process_function_node(n, name)
paul@0 786
paul@0 787
        origin = self.get_object_path(name)
paul@210 788
paul@210 789
        if self.function_defaults.get(origin):
paul@210 790
            return None
paul@210 791
        else:
paul@210 792
            return ResolvedNameRef(name, Reference("<function>", origin))
paul@0 793
paul@0 794
    def process_logical_node(self, n):
paul@0 795
paul@0 796
        "Process the given operator node 'n'."
paul@0 797
paul@0 798
        self.process_operator_chain(n.nodes, self.process_structure_node)
paul@0 799
paul@0 800
    def process_name_node(self, n):
paul@0 801
paul@0 802
        "Process the given name node 'n'."
paul@0 803
paul@0 804
        path = self.get_namespace_path()
paul@0 805
paul@420 806
        # Find predefined constant names before anything else.
paul@420 807
paul@420 808
        if n.name in predefined_constants:
paul@420 809
            ref = self.get_builtin(n.name)
paul@420 810
            value = ResolvedNameRef(n.name, ref)
paul@420 811
            return value
paul@420 812
paul@173 813
        # Special names that have already been identified.
paul@0 814
paul@0 815
        if n.name.startswith("$"):
paul@0 816
            value = self.get_special(n.name)
paul@0 817
            if value:
paul@0 818
                return value
paul@0 819
paul@0 820
        # Special case for operator functions introduced through code
paul@0 821
        # transformations.
paul@0 822
paul@0 823
        if n.name.startswith("$op"):
paul@0 824
paul@0 825
            # Obtain the location of the actual function defined in the operator
paul@0 826
            # package.
paul@0 827
paul@0 828
            op = n.name[len("$op"):]
paul@0 829
paul@0 830
            # Attempt to get a reference.
paul@0 831
paul@12 832
            ref = self.import_name_from_module(op, "operator")
paul@0 833
paul@0 834
            # Record the imported name and provide the resolved name reference.
paul@0 835
paul@0 836
            value = ResolvedNameRef(n.name, ref)
paul@0 837
            self.set_special(n.name, value)
paul@0 838
            return value
paul@0 839
paul@173 840
        # Special case for print operations.
paul@173 841
paul@173 842
        elif n.name.startswith("$print"):
paul@173 843
paul@173 844
            # Attempt to get a reference.
paul@173 845
paul@173 846
            ref = self.get_builtin("print_")
paul@173 847
paul@173 848
            # Record the imported name and provide the resolved name reference.
paul@173 849
paul@173 850
            value = ResolvedNameRef(n.name, ref)
paul@173 851
            self.set_special(n.name, value)
paul@173 852
            return value
paul@173 853
paul@60 854
        # Test for self usage, which is only allowed in methods.
paul@60 855
paul@60 856
        if n.name == "self" and not (self.in_function and self.in_class):
paul@60 857
            raise InspectError("Use of self is only allowed in methods.", path, n)
paul@60 858
paul@0 859
        # Record usage of the name.
paul@0 860
paul@0 861
        self.record_name(n.name)
paul@0 862
paul@0 863
        # Search for unknown names in non-function scopes immediately.
paul@0 864
        # External names in functions are resolved later.
paul@0 865
paul@0 866
        ref = self.find_name(n.name)
paul@0 867
        if ref:
paul@0 868
            return ResolvedNameRef(n.name, ref)
paul@0 869
paul@40 870
        # Explicitly-declared global names.
paul@0 871
paul@0 872
        elif self.in_function and n.name in self.scope_globals[path]:
paul@0 873
            return NameRef(n.name)
paul@0 874
paul@0 875
        # Examine other names.
paul@0 876
paul@0 877
        else:
paul@0 878
            tracker = self.trackers[-1]
paul@0 879
paul@0 880
            # Check local names.
paul@0 881
paul@0 882
            branches = tracker.tracking_name(n.name)
paul@0 883
paul@1 884
            # Local name.
paul@0 885
paul@0 886
            if branches:
paul@0 887
                self.record_branches_for_access(branches, n.name, None)
paul@117 888
                access_number = self.record_access_details(n.name, None, False, False)
paul@0 889
                return LocalNameRef(n.name, access_number)
paul@0 890
paul@40 891
            # Possible global or built-in name.
paul@0 892
paul@0 893
            else:
paul@0 894
                return NameRef(n.name)
paul@0 895
paul@0 896
    def process_operator_chain(self, nodes, fn):
paul@0 897
paul@0 898
        """
paul@0 899
        Process the given chain of 'nodes', applying 'fn' to each node or item.
paul@0 900
        Each node starts a new conditional region, effectively making a deeply-
paul@0 901
        nested collection of if-like statements.
paul@0 902
        """
paul@0 903
paul@0 904
        tracker = self.trackers[-1]
paul@0 905
paul@0 906
        for item in nodes:
paul@0 907
            tracker.new_branchpoint()
paul@0 908
            tracker.new_branch()
paul@0 909
            fn(item)
paul@0 910
paul@0 911
        for item in nodes[:-1]:
paul@0 912
            tracker.shelve_branch()
paul@0 913
            tracker.new_branch()
paul@0 914
            tracker.shelve_branch()
paul@0 915
            tracker.merge_branches()
paul@0 916
paul@0 917
        tracker.shelve_branch()
paul@0 918
        tracker.merge_branches()
paul@0 919
paul@0 920
    def process_try_node(self, n):
paul@0 921
paul@0 922
        """
paul@0 923
        Process the given "try...except" node 'n'.
paul@0 924
        """
paul@0 925
paul@479 926
        self.record_exception_handler()
paul@479 927
paul@0 928
        tracker = self.trackers[-1]
paul@0 929
        tracker.new_branchpoint()
paul@0 930
paul@0 931
        self.process_structure_node(n.body)
paul@0 932
paul@0 933
        for name, var, handler in n.handlers:
paul@0 934
            if name is not None:
paul@0 935
                self.process_structure_node(name)
paul@0 936
paul@0 937
            # Any abandoned branches from the body can now be resumed in a new
paul@0 938
            # branch.
paul@0 939
paul@0 940
            tracker.resume_abandoned_branches()
paul@0 941
paul@0 942
            # Establish the local for the handler.
paul@0 943
paul@0 944
            if var is not None:
paul@261 945
                self.process_assignment_node(var, None)
paul@0 946
            if handler is not None:
paul@0 947
                self.process_structure_node(handler)
paul@0 948
paul@0 949
            tracker.shelve_branch()
paul@0 950
paul@0 951
        # The else clause maintains the usage from the body but without the
paul@0 952
        # abandoned branches since they would never lead to the else clause
paul@0 953
        # being executed.
paul@0 954
paul@0 955
        if n.else_:
paul@0 956
            tracker.new_branch()
paul@0 957
            self.process_structure_node(n.else_)
paul@0 958
            tracker.shelve_branch()
paul@0 959
paul@0 960
        # Without an else clause, a null branch propagates the successful
paul@0 961
        # outcome.
paul@0 962
paul@0 963
        else:
paul@0 964
            tracker.new_branch()
paul@0 965
            tracker.shelve_branch()
paul@0 966
paul@0 967
        tracker.merge_branches()
paul@0 968
paul@0 969
    def process_try_finally_node(self, n):
paul@0 970
paul@0 971
        """
paul@0 972
        Process the given "try...finally" node 'n'.
paul@0 973
        """
paul@0 974
paul@479 975
        self.record_exception_handler()
paul@479 976
paul@0 977
        tracker = self.trackers[-1]
paul@0 978
        self.process_structure_node(n.body)
paul@0 979
paul@0 980
        # Any abandoned branches from the body can now be resumed.
paul@0 981
paul@0 982
        branches = tracker.resume_all_abandoned_branches()
paul@0 983
        self.process_structure_node(n.final)
paul@0 984
paul@0 985
        # At the end of the finally clause, abandoned branches are discarded.
paul@0 986
paul@0 987
        tracker.restore_active_branches(branches)
paul@0 988
paul@0 989
    def process_while_node(self, n):
paul@0 990
paul@0 991
        "Process the given while node 'n'."
paul@0 992
paul@0 993
        tracker = self.trackers[-1]
paul@0 994
        tracker.new_branchpoint(loop_node=True)
paul@0 995
paul@0 996
        # Evaluate any test or iterator outside the loop.
paul@0 997
paul@0 998
        self.process_structure_node(n.test)
paul@0 999
paul@0 1000
        # Propagate attribute usage to branches.
paul@0 1001
paul@0 1002
        tracker.new_branch(loop_node=True)
paul@0 1003
paul@0 1004
        # Enter the loop.
paul@0 1005
paul@0 1006
        in_conditional = self.in_conditional
paul@0 1007
        self.in_conditional = True
paul@0 1008
        self.process_structure_node(n.body)
paul@0 1009
        self.in_conditional = in_conditional
paul@0 1010
paul@0 1011
        # Continuing branches are resumed before any test.
paul@0 1012
paul@0 1013
        tracker.resume_continuing_branches()
paul@0 1014
paul@0 1015
        # Evaluate any continuation test within the body.
paul@0 1016
paul@0 1017
        self.process_structure_node(n.test)
paul@0 1018
paul@0 1019
        tracker.shelve_branch(loop_node=True)
paul@0 1020
paul@0 1021
        # Support the non-looping condition.
paul@0 1022
paul@0 1023
        tracker.new_branch()
paul@0 1024
        tracker.shelve_branch()
paul@0 1025
paul@0 1026
        tracker.merge_branches()
paul@0 1027
paul@0 1028
        # Evaluate any else clause outside branches.
paul@0 1029
paul@0 1030
        if n.else_:
paul@0 1031
            self.process_structure_node(n.else_)
paul@0 1032
paul@0 1033
        # Connect broken branches to the code after any loop.
paul@0 1034
paul@0 1035
        tracker.resume_broken_branches()
paul@0 1036
paul@0 1037
    # Branch tracking methods.
paul@0 1038
paul@0 1039
    def start_tracking(self, names):
paul@0 1040
paul@0 1041
        """
paul@0 1042
        Start tracking attribute usage for names in the current namespace,
paul@0 1043
        immediately registering the given 'names'.
paul@0 1044
        """
paul@0 1045
paul@0 1046
        path = self.get_namespace_path()
paul@0 1047
        parent = self.trackers[-1]
paul@0 1048
        tracker = BranchTracker()
paul@0 1049
        self.trackers.append(tracker)
paul@0 1050
paul@0 1051
        # Record the given names established as new branches.
paul@0 1052
paul@0 1053
        tracker.assign_names(names)
paul@0 1054
paul@0 1055
    def assign_name(self, name, name_ref):
paul@0 1056
paul@0 1057
        "Assign to 'name' the given 'name_ref' in the current namespace."
paul@0 1058
paul@0 1059
        name = self.get_name_for_tracking(name)
paul@0 1060
        self.trackers[-1].assign_names([name], [name_ref])
paul@0 1061
paul@0 1062
    def stop_tracking(self):
paul@0 1063
paul@0 1064
        """
paul@0 1065
        Stop tracking attribute usage, recording computed usage for the current
paul@0 1066
        namespace.
paul@0 1067
        """
paul@0 1068
paul@0 1069
        path = self.get_namespace_path()
paul@0 1070
        tracker = self.trackers.pop()
paul@0 1071
        self.record_assignments_for_access(tracker)
paul@0 1072
paul@0 1073
        self.attr_usage[path] = tracker.get_all_usage()
paul@0 1074
        self.name_initialisers[path] = tracker.get_all_values()
paul@0 1075
paul@0 1076
    def start_tracking_in_module(self):
paul@0 1077
paul@0 1078
        "Start tracking attribute usage in the module."
paul@0 1079
paul@0 1080
        tracker = BranchTracker()
paul@0 1081
        self.trackers.append(tracker)
paul@0 1082
paul@0 1083
    def stop_tracking_in_module(self):
paul@0 1084
paul@0 1085
        "Stop tracking attribute usage in the module."
paul@0 1086
paul@0 1087
        tracker = self.trackers[0]
paul@0 1088
        self.record_assignments_for_access(tracker)
paul@0 1089
        self.attr_usage[self.name] = tracker.get_all_usage()
paul@0 1090
        self.name_initialisers[self.name] = tracker.get_all_values()
paul@0 1091
paul@0 1092
    def record_assignments_for_access(self, tracker):
paul@0 1093
paul@0 1094
        """
paul@0 1095
        For the current path, use the given 'tracker' to record assignment
paul@0 1096
        version information for attribute accesses.
paul@0 1097
        """
paul@0 1098
paul@0 1099
        path = self.get_path_for_access()
paul@0 1100
paul@0 1101
        if not self.attr_accessor_branches.has_key(path):
paul@0 1102
            return
paul@0 1103
paul@0 1104
        init_item(self.attr_accessors, path, dict)
paul@0 1105
        attr_accessors = self.attr_accessors[path]
paul@0 1106
paul@0 1107
        # Obtain the branches applying during each access.
paul@0 1108
paul@0 1109
        for access, all_branches in self.attr_accessor_branches[path].items():
paul@0 1110
            name, attrnames = access
paul@0 1111
            init_item(attr_accessors, access, list)
paul@0 1112
paul@0 1113
            # Obtain the assignments applying to each branch.
paul@0 1114
paul@0 1115
            for branches in all_branches:
paul@0 1116
                positions = tracker.get_assignment_positions_for_branches(name, branches)
paul@0 1117
paul@0 1118
                # Detect missing name information.
paul@0 1119
paul@0 1120
                if None in positions:
paul@0 1121
                    globals = self.global_attr_accesses.get(path)
paul@0 1122
                    accesses = globals and globals.get(name)
paul@0 1123
                    if not accesses:
paul@0 1124
                        print >>sys.stderr, "In %s, %s may not be defined when used." % (
paul@0 1125
                            self.get_namespace_path(), name)
paul@0 1126
                    positions.remove(None)
paul@0 1127
paul@0 1128
                attr_accessors[access].append(positions)
paul@0 1129
paul@0 1130
    def record_branches_for_access(self, branches, name, attrnames):
paul@0 1131
paul@0 1132
        """
paul@0 1133
        Record the given 'branches' for an access involving the given 'name' and
paul@0 1134
        'attrnames'.
paul@0 1135
        """
paul@0 1136
paul@0 1137
        access = name, attrnames
paul@0 1138
        path = self.get_path_for_access()
paul@0 1139
paul@0 1140
        init_item(self.attr_accessor_branches, path, dict)
paul@0 1141
        attr_accessor_branches = self.attr_accessor_branches[path]
paul@0 1142
paul@0 1143
        init_item(attr_accessor_branches, access, list)
paul@0 1144
        attr_accessor_branches[access].append(branches)
paul@0 1145
paul@117 1146
    def record_access_details(self, name, attrnames, assignment, invocation):
paul@0 1147
paul@0 1148
        """
paul@0 1149
        For the given 'name' and 'attrnames', record an access indicating
paul@0 1150
        whether 'assignment' is occurring.
paul@0 1151
paul@0 1152
        These details correspond to accesses otherwise recorded by the attribute
paul@0 1153
        accessor and attribute access dictionaries.
paul@0 1154
        """
paul@0 1155
paul@0 1156
        access = name, attrnames
paul@0 1157
        path = self.get_path_for_access()
paul@0 1158
paul@0 1159
        init_item(self.attr_access_modifiers, path, dict)
paul@0 1160
        init_item(self.attr_access_modifiers[path], access, list)
paul@0 1161
paul@0 1162
        access_number = len(self.attr_access_modifiers[path][access])
paul@117 1163
        self.attr_access_modifiers[path][access].append((assignment, invocation))
paul@0 1164
        return access_number
paul@0 1165
paul@0 1166
    def record_global_access_details(self, name, attrnames):
paul@0 1167
paul@0 1168
        """
paul@0 1169
        Record details of a global access via the given 'name' involving the
paul@0 1170
        indicated 'attrnames'.
paul@0 1171
        """
paul@0 1172
paul@0 1173
        path = self.get_namespace_path()
paul@0 1174
paul@0 1175
        init_item(self.global_attr_accesses, path, dict)
paul@0 1176
        init_item(self.global_attr_accesses[path], name, set)
paul@0 1177
        self.global_attr_accesses[path][name].add(attrnames)
paul@0 1178
paul@0 1179
    # Namespace modification.
paul@0 1180
paul@0 1181
    def record_name(self, name):
paul@0 1182
paul@0 1183
        "Record the use of 'name' in a namespace."
paul@0 1184
paul@0 1185
        path = self.get_namespace_path()
paul@0 1186
        init_item(self.names_used, path, set)
paul@0 1187
        self.names_used[path].add(name)
paul@0 1188
paul@12 1189
    def set_module(self, name, module_name):
paul@0 1190
paul@0 1191
        """
paul@12 1192
        Set a module in the current namespace using the given 'name' associated
paul@12 1193
        with the corresponding 'module_name'.
paul@0 1194
        """
paul@0 1195
paul@0 1196
        if name:
paul@12 1197
            self.set_general_local(name, Reference("<module>", module_name))
paul@0 1198
paul@0 1199
    def set_definition(self, name, kind):
paul@0 1200
paul@0 1201
        """
paul@0 1202
        Set the definition having the given 'name' and 'kind'.
paul@0 1203
paul@0 1204
        Definitions are set in the static namespace hierarchy, but they can also
paul@0 1205
        be recorded for function locals.
paul@0 1206
        """
paul@0 1207
paul@0 1208
        if self.is_global(name):
paul@0 1209
            print >>sys.stderr, "In %s, %s is defined as being global." % (
paul@0 1210
                self.get_namespace_path(), name)
paul@0 1211
paul@0 1212
        path = self.get_object_path(name)
paul@0 1213
        self.set_object(path, kind)
paul@0 1214
paul@0 1215
        ref = self.get_object(path)
paul@0 1216
        if ref.get_kind() == "<var>":
paul@0 1217
            print >>sys.stderr, "In %s, %s is defined more than once." % (
paul@0 1218
                self.get_namespace_path(), name)
paul@0 1219
paul@0 1220
        if not self.is_global(name) and self.in_function:
paul@0 1221
            self.set_function_local(name, ref)
paul@0 1222
paul@0 1223
    def set_function_local(self, name, ref=None):
paul@0 1224
paul@0 1225
        "Set the local with the given 'name' and optional 'ref'."
paul@0 1226
paul@0 1227
        locals = self.function_locals[self.get_namespace_path()]
paul@0 1228
        multiple = not ref or locals.has_key(name) and locals[name] != ref
paul@0 1229
        locals[name] = multiple and Reference("<var>") or ref
paul@0 1230
paul@0 1231
    def assign_general_local(self, name, name_ref):
paul@0 1232
paul@0 1233
        """
paul@0 1234
        Set for 'name' the given 'name_ref', recording the name for attribute
paul@0 1235
        usage tracking.
paul@0 1236
        """
paul@0 1237
paul@0 1238
        self.set_general_local(name, name_ref)
paul@0 1239
        self.assign_name(name, name_ref)
paul@0 1240
paul@0 1241
    def set_general_local(self, name, value=None):
paul@0 1242
paul@0 1243
        """
paul@0 1244
        Set the 'name' with optional 'value' in any kind of local namespace,
paul@0 1245
        where the 'value' should be a reference if specified.
paul@0 1246
        """
paul@0 1247
paul@0 1248
        init_value = self.get_initialising_value(value)
paul@0 1249
paul@0 1250
        # Module global names.
paul@0 1251
paul@0 1252
        if self.is_global(name):
paul@0 1253
            path = self.get_global_path(name)
paul@0 1254
            self.set_object(path, init_value)
paul@0 1255
paul@0 1256
        # Function local names.
paul@0 1257
paul@0 1258
        elif self.in_function:
paul@0 1259
            path = self.get_object_path(name)
paul@0 1260
            self.set_function_local(name, init_value)
paul@0 1261
paul@0 1262
        # Other namespaces (classes).
paul@0 1263
paul@0 1264
        else:
paul@0 1265
            path = self.get_object_path(name)
paul@0 1266
            self.set_name(name, init_value)
paul@0 1267
paul@0 1268
    def set_name(self, name, ref=None):
paul@0 1269
paul@0 1270
        "Attach the 'name' with optional 'ref' to the current namespace."
paul@0 1271
paul@0 1272
        self.set_object(self.get_object_path(name), ref)
paul@0 1273
paul@0 1274
    def set_instance_attr(self, name, ref=None):
paul@0 1275
paul@0 1276
        """
paul@0 1277
        Add an instance attribute of the given 'name' to the current class,
paul@0 1278
        using the optional 'ref'.
paul@0 1279
        """
paul@0 1280
paul@251 1281
        self._set_instance_attr(self.in_class, name, ref)
paul@251 1282
paul@251 1283
    def _set_instance_attr(self, path, name, ref=None):
paul@251 1284
paul@251 1285
        init_item(self.instance_attrs, path, set)
paul@251 1286
        self.instance_attrs[path].add(name)
paul@0 1287
paul@0 1288
        if ref:
paul@251 1289
            init_item(self.instance_attr_constants, path, dict)
paul@251 1290
            self.instance_attr_constants[path][name] = ref
paul@0 1291
paul@0 1292
    def get_initialising_value(self, value):
paul@0 1293
paul@0 1294
        "Return a suitable initialiser reference for 'value'."
paul@0 1295
paul@25 1296
        # Includes LiteralSequenceRef, ResolvedNameRef...
paul@25 1297
paul@25 1298
        if isinstance(value, (NameRef, AccessRef, InstanceRef)):
paul@0 1299
            return value.reference()
paul@0 1300
paul@0 1301
        # In general, invocations do not produce known results. However, the
paul@0 1302
        # name initialisers are resolved once a module has been inspected.
paul@0 1303
paul@0 1304
        elif isinstance(value, InvocationRef):
paul@27 1305
            return value.reference()
paul@0 1306
paul@229 1307
        # Variable references are unknown results.
paul@229 1308
paul@229 1309
        elif isinstance(value, VariableRef):
paul@229 1310
            return value.reference()
paul@229 1311
paul@0 1312
        else:
paul@0 1313
            return value
paul@0 1314
paul@0 1315
    # Static, program-relative naming.
paul@0 1316
paul@0 1317
    def find_name(self, name):
paul@0 1318
paul@0 1319
        """
paul@0 1320
        Return the qualified name for the given 'name' used in the current
paul@0 1321
        non-function namespace.
paul@0 1322
        """
paul@0 1323
paul@0 1324
        path = self.get_namespace_path()
paul@0 1325
        ref = None
paul@0 1326
paul@0 1327
        if not self.in_function and name not in predefined_constants:
paul@0 1328
            if self.in_class:
paul@152 1329
                ref = self.get_object(self.get_object_path(name), False)
paul@0 1330
            if not ref:
paul@0 1331
                ref = self.get_global_or_builtin(name)
paul@0 1332
paul@0 1333
        return ref
paul@0 1334
paul@0 1335
    def get_class(self, node):
paul@0 1336
paul@0 1337
        """
paul@0 1338
        Use the given 'node' to obtain the identity of a class. Return a
paul@0 1339
        reference for the class. Unresolved dependencies are permitted and must
paul@0 1340
        be resolved later.
paul@0 1341
        """
paul@0 1342
paul@0 1343
        ref = self._get_class(node)
paul@0 1344
        return ref.has_kind(["<class>", "<depends>"]) and ref or None
paul@0 1345
paul@0 1346
    def _get_class(self, node):
paul@0 1347
paul@0 1348
        """
paul@0 1349
        Use the given 'node' to find a class definition. Return a reference to
paul@0 1350
        the class.
paul@0 1351
        """
paul@0 1352
paul@0 1353
        if isinstance(node, compiler.ast.Getattr):
paul@0 1354
paul@0 1355
            # Obtain the identity of the access target.
paul@0 1356
paul@0 1357
            ref = self._get_class(node.expr)
paul@0 1358
paul@0 1359
            # Where the target is a class or module, obtain the identity of the
paul@0 1360
            # attribute.
paul@0 1361
paul@0 1362
            if ref.has_kind(["<function>", "<var>"]):
paul@0 1363
                return None
paul@0 1364
            else:
paul@0 1365
                attrname = "%s.%s" % (ref.get_origin(), node.attrname)
paul@0 1366
                return self.get_object(attrname)
paul@0 1367
paul@0 1368
        # Names can be module-level or built-in.
paul@0 1369
paul@0 1370
        elif isinstance(node, compiler.ast.Name):
paul@0 1371
paul@0 1372
            # Record usage of the name and attempt to identify it.
paul@0 1373
paul@0 1374
            self.record_name(node.name)
paul@73 1375
            return self.find_name(node.name)
paul@0 1376
        else:
paul@0 1377
            return None
paul@0 1378
paul@0 1379
    def get_constant(self, name, value):
paul@0 1380
paul@0 1381
        "Return a constant reference for the given type 'name' and 'value'."
paul@0 1382
paul@12 1383
        ref = self.get_builtin_class(name)
paul@0 1384
        return self.get_constant_reference(ref, value)
paul@0 1385
paul@405 1386
    def get_literal_instance(self, n, name=None):
paul@0 1387
paul@405 1388
        """
paul@405 1389
        For node 'n', return a reference to an instance of 'name', or if 'name'
paul@405 1390
        is not specified, deduce the type from the value.
paul@405 1391
        """
paul@0 1392
paul@366 1393
        # Handle stray None constants (Sliceobj seems to produce them).
paul@366 1394
paul@366 1395
        if name == "NoneType":
paul@366 1396
            return self.process_name_node(compiler.ast.Name("None"))
paul@366 1397
paul@0 1398
        # Obtain the details of the literal itself.
paul@0 1399
        # An alias to the type is generated for sequences.
paul@0 1400
paul@0 1401
        if name in ("dict", "list", "tuple"):
paul@405 1402
            ref = self.get_builtin_class(name)
paul@0 1403
            self.set_special_literal(name, ref)
paul@0 1404
            return self.process_literal_sequence_node(n, name, ref, LiteralSequenceRef)
paul@0 1405
paul@0 1406
        # Constant values are independently recorded.
paul@0 1407
paul@0 1408
        else:
paul@537 1409
            value, typename, encoding = self.get_constant_value(n.value, n.literals)
paul@538 1410
            ref = self.get_builtin_class(typename)
paul@406 1411
            return self.get_constant_reference(ref, value, encoding)
paul@0 1412
paul@17 1413
    # Special names.
paul@0 1414
paul@17 1415
    def get_special(self, name):
paul@0 1416
paul@17 1417
        "Return any stored value for the given special 'name'."
paul@0 1418
paul@423 1419
        value = self.special.get(name)
paul@423 1420
        if value:
paul@423 1421
            ref, paths = value
paul@423 1422
        else:
paul@423 1423
            ref = None
paul@423 1424
        return ref
paul@17 1425
paul@17 1426
    def set_special(self, name, value):
paul@0 1427
paul@17 1428
        """
paul@17 1429
        Set a special 'name' that merely tracks the use of an implicit object
paul@17 1430
        'value'.
paul@17 1431
        """
paul@0 1432
paul@423 1433
        if not self.special.has_key(name):
paul@423 1434
            paths = set()
paul@423 1435
            self.special[name] = value, paths
paul@423 1436
        else:
paul@423 1437
            _ref, paths = self.special[name]
paul@423 1438
paul@423 1439
        paths.add(self.get_namespace_path())
paul@17 1440
paul@17 1441
    def set_special_literal(self, name, ref):
paul@0 1442
paul@17 1443
        """
paul@17 1444
        Set a special name for the literal type 'name' having type 'ref'. Such
paul@17 1445
        special names provide a way of referring to literal object types.
paul@17 1446
        """
paul@0 1447
paul@17 1448
        literal_name = "$L%s" % name
paul@17 1449
        value = ResolvedNameRef(literal_name, ref)
paul@17 1450
        self.set_special(literal_name, value)
paul@0 1451
paul@0 1452
    # Functions and invocations.
paul@0 1453
paul@36 1454
    def set_invocation_usage(self):
paul@36 1455
paul@36 1456
        """
paul@36 1457
        Discard the current invocation storage figures, retaining the maximum
paul@36 1458
        values.
paul@36 1459
        """
paul@36 1460
paul@36 1461
        for path, (current, maximum) in self.function_targets.items():
paul@36 1462
            self.importer.function_targets[path] = self.function_targets[path] = maximum
paul@36 1463
paul@36 1464
        for path, (current, maximum) in self.function_arguments.items():
paul@36 1465
            self.importer.function_arguments[path] = self.function_arguments[path] = maximum
paul@36 1466
paul@0 1467
    def allocate_arguments(self, path, args):
paul@0 1468
paul@0 1469
        """
paul@0 1470
        Allocate temporary argument storage using current and maximum
paul@0 1471
        requirements for the given 'path' and 'args'.
paul@0 1472
        """
paul@0 1473
paul@192 1474
        # Class and module initialisation is ultimately combined.
paul@192 1475
paul@192 1476
        if not self.in_function:
paul@192 1477
            path = self.name
paul@192 1478
paul@0 1479
        init_item(self.function_targets, path, lambda: [0, 0])
paul@0 1480
        t = self.function_targets[path]
paul@0 1481
        t[0] += 1
paul@0 1482
        t[1] = max(t[0], t[1])
paul@0 1483
paul@0 1484
        init_item(self.function_arguments, path, lambda: [0, 0])
paul@0 1485
        t = self.function_arguments[path]
paul@0 1486
        t[0] += len(args) + 1
paul@0 1487
        t[1] = max(t[0], t[1])
paul@0 1488
paul@0 1489
    def deallocate_arguments(self, path, args):
paul@0 1490
paul@0 1491
        "Deallocate temporary argument storage for the given 'path' and 'args'."
paul@0 1492
paul@192 1493
        # Class and module initialisation is ultimately combined.
paul@192 1494
paul@192 1495
        if not self.in_function:
paul@192 1496
            path = self.name
paul@192 1497
paul@0 1498
        self.function_targets[path][0] -= 1
paul@0 1499
        self.function_arguments[path][0] -= len(args) + 1
paul@0 1500
paul@479 1501
    # Exceptions.
paul@479 1502
paul@479 1503
    def record_exception_handler(self):
paul@479 1504
paul@479 1505
        "Record the current namespace as employing an exception handler."
paul@479 1506
paul@479 1507
        self.exception_namespaces.add(self.get_namespace_path())
paul@479 1508
paul@0 1509
# vim: tabstop=4 expandtab shiftwidth=4